已知點(diǎn)A(4,0),P是圓x2+y2=1的動(dòng)點(diǎn),求線(xiàn)段AP的中點(diǎn)M的軌跡方程.
考點(diǎn):軌跡方程
專(zhuān)題:計(jì)算題,直線(xiàn)與圓
分析:設(shè)M(x,y),P(a,b),由于M是AP的中點(diǎn),點(diǎn)A(4,0),故可由中點(diǎn)坐標(biāo)公式得到a=2x-4,b=2y,又P(a,b)為圓x2+y2=1上一點(diǎn)動(dòng)點(diǎn),將a=2x-4,b=2y代入x2+y2=1得到M(x,y)點(diǎn)的坐標(biāo)所滿(mǎn)足的方程,整理即得點(diǎn)M的軌跡方程.
解答: 解:設(shè)M(x,y),P(a,b)
 由A(4,0),M是AP的中點(diǎn)
 故有a=2x-4,b=2y
又P為圓x2+y2=1上一動(dòng)點(diǎn),
∴(2x-4)2+(2y)2=1
整理得(x-2)2+y2=
1
4

故AP的中點(diǎn)M的軌跡方程是(x-2)2+y2=
1
4
點(diǎn)評(píng):本題的考點(diǎn)是軌跡方程,考查用代入法求支點(diǎn)的軌跡方程,代入法適合求動(dòng)點(diǎn)與另外已知軌跡方程的點(diǎn)有固定關(guān)系的點(diǎn)的軌跡方程,用要求軌跡方程的點(diǎn)的坐標(biāo)表示出已知軌跡方程的點(diǎn)的坐標(biāo),再代入已知的軌跡方程,從而求出動(dòng)點(diǎn)的坐標(biāo)所滿(mǎn)足的方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

C
 
n-1
2n-3
+C
 
2n-3
n+1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|1≤x≤5},B={x|(x-1)(x-3)≥0}.若從集合A中隨機(jī)取一根數(shù)x0,則x0∈A∩B的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求經(jīng)過(guò)點(diǎn)P(0,1)且與直線(xiàn)y-
3
x=0的夾角為30°的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-x3+x2,x<1
einx,x≥1
,若關(guān)于x的方程f(x)=kx(x∈R)恰有兩個(gè)不同的實(shí)數(shù)根,則k的取值范圍為( 。
A、k≤0或
1
4
<k<1
B、k=1或k≤0
C、
1
4
<k<1
D、k≤0或
1
4
<k<e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)P到直線(xiàn)x=-1的距離比它到點(diǎn)(2,0)的距離小1,則點(diǎn)P的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上不重合的四點(diǎn)P,A,B,C滿(mǎn)足
PA
+
PB
+
PC
=0
,且
AB
+
AC
=m
AP
,那么實(shí)數(shù)m的值為(  )
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:cos10°cos(-20°)+sin20°sin170°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=log2(ax-bx),且f(1)=1,f(2)=log212.
(1)求a,b的值;
(2)當(dāng)x∈[1,3]時(shí),求f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案