2.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x對年銷售額(單位:萬元)的影響,對近6年的年宣傳費(fèi)xi和年銷售額yi(i=1,2,…6)數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)宣傳費(fèi)xi和年銷售額yi具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.
$\overline{x}$ $\overline{y}$ $\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$ $\sum_{i=1}^{6}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$ 
6500  201300 
(Ⅰ)根據(jù)表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅱ)利用)(Ⅰ)中的回歸方程預(yù)測該公司如果對該產(chǎn)品的宣傳費(fèi)支出為10萬元時(shí)銷售額時(shí)n萬元,該公司計(jì)劃從10名中層管理人員中挑選出3人擔(dān)任總裁助理,10名中層管理人員中有2名是技術(shù)部骨干,記所挑選3人中技術(shù)部骨干人數(shù)為ξ,且隨機(jī)變量η=$\frac{n}{40}$+ξ,求η的概率分布列與數(shù)學(xué)期望.
附:回歸直線的傾斜率截距的最小二乘估計(jì)公式分別為:
$\widehat=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i-1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}=\overline{y}-\widehat\overline{x}$.

分析 (Ⅰ)根據(jù)表中數(shù)據(jù),計(jì)算回歸系數(shù),寫出y關(guān)于x的回歸方程;
(Ⅱ)把x=10代入(Ⅰ)中的回歸方程計(jì)算$\stackrel{∧}{y}$即可預(yù)測結(jié)果,寫出隨機(jī)變量ξ的可能取值,計(jì)算對應(yīng)的概率值,再根據(jù)η與ξ的關(guān)系,寫出η的分布列,求出η的數(shù)學(xué)期望值.

解答 解:(Ⅰ)根據(jù)表中數(shù)據(jù),計(jì)算
$\widehat=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i-1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{1300}{20}$=65,
$\widehat{a}=\overline{y}-\widehat\overline{x}$=500-65×6=110,
∴y關(guān)于x的回歸方程為$\stackrel{∧}{y}$=65x+110;
(Ⅱ)把x=10代入(Ⅰ)中的回歸方程$\stackrel{∧}{y}$=65×10+110=760,
預(yù)測該公司如果對該產(chǎn)品的宣傳費(fèi)支出為10萬元時(shí)銷售額為760萬元;
根據(jù)題意,隨機(jī)變量ξ的可能取值為0,1,2;
則P(ξ=0)=$\frac{{C}_{8}^{3}}{{C}_{10}^{3}}$=$\frac{7}{15}$,
P(ξ=1)=$\frac{{C}_{8}^{2}{•C}_{2}^{1}}{{C}_{10}^{3}}$=$\frac{7}{15}$,
P(ξ=2)=$\frac{{C}_{8}^{1}{•C}_{2}^{2}}{{C}_{10}^{3}}$=$\frac{1}{15}$;
且隨機(jī)變量η=$\frac{n}{40}$+ξ=19+ξ,
∴η的概率分布列為:

η 192021 
ξ012
P$\frac{7}{15}$ $\frac{7}{15}$$\frac{1}{15}$
η數(shù)學(xué)期望Eη=19×$\frac{7}{15}$+20×$\frac{7}{15}$+21×$\frac{1}{15}$=$\frac{98}{5}$.

點(diǎn)評 本題考查了離散型隨機(jī)變量的分布列與數(shù)學(xué)期望的計(jì)算問題,也考查了線性回歸方程的計(jì)算問題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,D點(diǎn)為邊BC中點(diǎn),記$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{AD}$=( 。
A.2($\overrightarrow{a}$+$\overrightarrow$)B.2($\overrightarrow{a}$-$\overrightarrow$)C.$\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow$)D.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若sinx-2cosx=0,則$\frac{1+sin2x}{si{n}^{2}x-co{s}^{2}x}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的通項(xiàng)公式為${a_n}=3-\frac{n+3}{2^n}(n∈{N_+})$,數(shù)列{bn}的通項(xiàng)公式為${b_n}=\frac{5n}{2n+1}$(n∈N+
(1)分別令n=1,2,3,4,計(jì)算an,bn值,并比較a1與b1,a2與b2,a3與b3,a4與b4大;
(2)根據(jù)(1)猜測an與bn的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)是(-∞,0)的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有2f(x)+xf′(x)>0,則不等式(x+2016)2f(x+2016)-9f(-3)>0的解集為(  )
A.(-∞,-2013)B.(-2013,0)C.(-∞,-2019)D.(-2019,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某種產(chǎn)品的以往各年的宣傳費(fèi)用支出x(萬元)與銷售量t(萬件)之間有如下對應(yīng)數(shù)據(jù)
   x   2   4   5   6   8
   t   4   3   6   7   8
(1)試求回歸直線方程;
(2)設(shè)該產(chǎn)品的單件售價(jià)與單件生產(chǎn)成本的差為y(元),若y與銷售量t(萬件)的函數(shù)關(guān)系是$y=-\frac{1}{32000}{t}^{2}-\frac{1}{t}+\frac{103}{80}$(0<t<30),試估計(jì)宣傳費(fèi)用支出x為多少萬元時(shí),銷售該產(chǎn)品的利潤最大?(注:銷售利潤=銷售額-生產(chǎn)成本-宣傳費(fèi)用)
(參考數(shù)據(jù)與公式:$\sum_{i=1}^{5}{{x}_{i}}^{2}=145$,$\sum_{i=1}^{5}{x}_{i}{t}_{i}$=156,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知集合A={x|1≤x≤3},$B=\left\{{\left.{x\left|\right.\sqrt{x-1}≥1}\right\}}\right.$.
(1)求A∩B;
(2)若A∩B是集合{x|x≥a}的子集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=$\sqrt{3}$sinx+cosx,將f(x)圖象上所有點(diǎn)的橫坐標(biāo)都變化到原來的2倍(縱坐標(biāo)不變)得到函數(shù)g(x)的圖象,那么g(x)的周期是4π,值域是[-2,2],含原點(diǎn)的遞增區(qū)間是[$-\frac{4π}{3}$,$\frac{2π}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知隨機(jī)變量X~N(0,σ2),若P(X>2)=0.03,則P(-2≤X≤2)=(  )
A.0.47B.0.485C.0.94D.0.97

查看答案和解析>>

同步練習(xí)冊答案