分析 設g(x)=f(x)-$\frac{1}{3}$x,由f′(x)<$\frac{1}{3}$,得到g′(x)小于0,得到g(x)為減函數(shù),將所求不等式變形后,利用g(x)為減函數(shù)求出x的范圍,即為所求不等式的解集
解答 解:設g(x)=f(x)-$\frac{1}{3}$x,
∵f′(x)<$\frac{1}{3}$,
∴g′(x)=f′(x)-$\frac{1}{3}$<0,
∴g(x)為減函數(shù),又f(2)=1,
∴f(log2x)>$\frac{lo{g}_{2}x+1}{3}$=$\frac{1}{3}$log2x+$\frac{1}{3}$,
即g(log2x)=f(log2x)-$\frac{1}{3}$log2x>$\frac{1}{3}$=g(2)=f(2)-$\frac{2}{3}$=g(log22),
∴l(xiāng)og2x<log22,又y=log2x為底數(shù)是2的增函數(shù),
∴0<x<2,
則不等式f(log2x)>$\frac{lo{g}_{2}x+1}{3}$的解集為(0,2).
故答案為:(0,2).
點評 此題考查了其他不等式的解法,涉及的知識有:利用導數(shù)研究函數(shù)的增減性,對數(shù)函數(shù)的單調(diào)性及特殊點,以及對數(shù)的運算性質(zhì),是一道綜合性較強的試題
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2盞 | B. | 3盞 | C. | 4盞 | D. | 5盞 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2016-2017學年內(nèi)蒙古高二文上月考一數(shù)學試卷(解析版) 題型:解答題
已知橢圓.
(Ⅰ)若,求橢圓的離心率及短軸長;
(Ⅱ)如存在過點,且與橢圓交于兩點的直線,使得以線段為直徑的圓恰好通過坐標原點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com