【題目】四棱錐P﹣ABCD的底面是一個(gè)正方形,PA⊥平面ABCD,PA=AB=2,E是棱PA的中點(diǎn),則異面直線BE與AC所成角的余弦值是(
A.
B.
C.
D.

【答案】B
【解析】解:以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,

則B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),

=(﹣2,0,1), =(2,2,0),

設(shè)異面直線BE與AC所成角為θ,

則cosθ= = =

故選:B.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解異面直線及其所成的角的相關(guān)知識(shí),掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)f(x)= (其中e為自然對(duì)數(shù)的底數(shù)),h(x)=x﹣
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)設(shè)g(x)= ,.已知直線y= 是曲線y=f(x)的切線,且函數(shù)g(x)在(0,+∞)上是增函數(shù).
(i)求實(shí)數(shù)a的值;
(ii)求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為(
A.20π
B.24π
C.28π
D.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《數(shù)學(xué)九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現(xiàn)有周長(zhǎng)為4+ 的△ABC滿足sinA:sinB:sinC=( ﹣1): : ( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中組織數(shù)學(xué)知識(shí)競(jìng)賽,采取答題闖關(guān)的形式,分兩種題型,每種題型設(shè)兩關(guān).“數(shù)學(xué)文化”題答對(duì)一道得5分,“數(shù)學(xué)應(yīng)用”題答對(duì)一道得10分,答對(duì)一道題即可進(jìn)入下一關(guān),否則終止比賽.有甲、乙、丙三人前來參賽,設(shè)三人答對(duì)每道題的概率分別是 、 、 ,三人答題互不影響.甲、乙選擇“數(shù)學(xué)文化”題,丙選擇“數(shù)學(xué)應(yīng)用”題.
(Ⅰ)求乙、丙兩人所得分?jǐn)?shù)相等的概率;
(Ⅱ)設(shè)甲、丙兩人所得分?jǐn)?shù)之和為隨機(jī)變量X,求X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了了解高三學(xué)生每天自主學(xué)習(xí)中國古典文學(xué)的時(shí)間,隨機(jī)抽取了高三男生和女生各50名進(jìn)行問卷調(diào)查,其中每天自主學(xué)習(xí)中國古典文學(xué)的時(shí)間超過3小時(shí)的學(xué)生稱為“古文迷”,否則為“非古文迷”,調(diào)查結(jié)果如表:

古文迷

非古文迷

合計(jì)

男生

26

24

50

女生

30

20

50

合計(jì)

56

44

100

(Ⅰ)根據(jù)表中數(shù)據(jù)能否判斷有60%的把握認(rèn)為“古文迷”與性別有關(guān)?
(Ⅱ)現(xiàn)從調(diào)查的女生中按分層抽樣的方法抽出5人進(jìn)行調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);
(Ⅲ)現(xiàn)從(Ⅱ)中所抽取的5人中再隨機(jī)抽取3人進(jìn)行調(diào)查,記這3人中“古文迷”的人數(shù)為ξ,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望.
參考公式:K2= ,其中n=a+b+c+d.
參考數(shù)據(jù):

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.321

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究男女同學(xué)空間想象能力的差異,孫老師從高一年級(jí)隨機(jī)選取了20名男生、20名女生,進(jìn)行空間圖形識(shí)別測(cè)試,得到成績(jī)莖葉圖如下,假定成績(jī)大于等于80分的同學(xué)為“空間想象能力突出”,低于80分的同學(xué)為“空間想象能力正!保
(1)完成下面2×2列聯(lián)表,

空間想象能力突出

空間想象能力正常

合計(jì)

男生

女生

合計(jì)


(2)判斷是否有90%的把握認(rèn)為“空間想象能力突出”與性別有關(guān);
(3)從“空間想象能力突出”的同學(xué)中隨機(jī)選取男生2名、女生2名,記其中成績(jī)超過90分的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望. 下面公式及臨界值表僅供參考:

P(X2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機(jī)對(duì)50名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車速情況為:在30名男性駕駛員中,平均車速超過100km/h的有20人,不超過100km/h的有10人.在20名女性駕駛員中,平均車速超過100km/h的有5人,不超過100km/h的有15人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車速超過100km/h的人與性別有關(guān);

平均車速超過100km/h人數(shù)

平均車速不超過100km/h人數(shù)

合計(jì)

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計(jì)

(Ⅱ)以上述數(shù)據(jù)樣本來估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機(jī)抽取3輛,記這3輛車中駕駛員為女性且車速不超過100km/h的車輛數(shù)為ζ,若每次抽取的結(jié)果是相互獨(dú)立的,求ζ的分布列和數(shù)學(xué)期望.
參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):

P(K2≥k0

0.150

0.100

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,Sn=2an+1 , 其中Sn為{an}的前n項(xiàng)和(n∈N*).
(Ⅰ)求S1 , S2及數(shù)列{Sn}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足 ,且{bn}的前n項(xiàng)和為Tn , 求證:當(dāng)n≥2時(shí),

查看答案和解析>>

同步練習(xí)冊(cè)答案