【題目】已知數(shù)列{an}滿(mǎn)足a1=1,Sn=2an+1 , 其中Sn為{an}的前n項(xiàng)和(n∈N*).
(Ⅰ)求S1 , S2及數(shù)列{Sn}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿(mǎn)足 ,且{bn}的前n項(xiàng)和為T(mén)n , 求證:當(dāng)n≥2時(shí), .
【答案】解:(Ⅰ)數(shù)列{an}滿(mǎn)足Sn=2an+1,則Sn=2an+1=2(Sn+1﹣Sn),即3Sn=2Sn+1,
∴ ,
即數(shù)列{Sn}為以1為首項(xiàng),以 為公比的等比數(shù)列,
∴Sn=( )n﹣1(n∈N*).
∴S1=1,S2= ;
(Ⅱ)在數(shù)列{bn}中, ,
Tn為{bn}的前n項(xiàng)和,
則|Tn|= |= .
而當(dāng)n≥2時(shí), ,
即
【解析】(Ⅰ)根據(jù)數(shù)列的遞推公式得到數(shù)列{Sn}為以1為首項(xiàng),以 為公比的等比數(shù)列,即可求出通項(xiàng)公式,再代值計(jì)算即可,(Ⅱ)先求出bn,再根據(jù)前n項(xiàng)和公式得到|Tn|,利用放縮法即可證明.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐P﹣ABCD的底面是一個(gè)正方形,PA⊥平面ABCD,PA=AB=2,E是棱PA的中點(diǎn),則異面直線BE與AC所成角的余弦值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A∈C,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn);
(1)若∠BFD=90°,△ABD的面積為 ,求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù)f(x)是定義在R上的偶函數(shù),f(x+1)為奇函數(shù),f(0)=0,當(dāng)x∈(0,1]時(shí),f(x)=log2x,則在區(qū)間(8,9)內(nèi)滿(mǎn)足方f(x)程f(x)+2=f( )的實(shí)數(shù)x為 ( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】祖沖之之子祖暅?zhǔn)俏覈?guó)南北朝時(shí)代偉大的科學(xué)家,他在實(shí)踐的基礎(chǔ)上提出了體積計(jì)算的原理:“冪勢(shì)既同,則積不容異”.意思是,如果兩個(gè)等高的幾何體在同高處截得的截面面積恒等,那么這兩個(gè)幾何體的體積相等.此即祖暅原理.利用這個(gè)原理求球的體積時(shí),需要構(gòu)造一個(gè)滿(mǎn)足條件的幾何體,已知該幾何體三視圖如圖所示,用一個(gè)與該幾何體的下底面平行相距為h(0<h<2)的平面截該幾何體,則截面面積為( )
A.4π
B.πh2
C.π(2﹣h)2
D.π(4﹣h2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線l的參數(shù)方程為 ,(t為參數(shù),0<θ<π),曲線C的極坐標(biāo)方程為ρsin2θ﹣2cosθ=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),當(dāng)θ變化時(shí),求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某企業(yè)的近3年的前7個(gè)月的月利潤(rùn)(單位:百萬(wàn)元)如下面的折線圖所示:
(1)試問(wèn)這3年的前7個(gè)月中哪個(gè)月的月平均利潤(rùn)較高?
(2)通過(guò)計(jì)算判斷這3年的前7個(gè)月的總利潤(rùn)的發(fā)展趨勢(shì);
(3)試以第3年的前4個(gè)月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測(cè)第3年8月份的利潤(rùn).
月份x | 1 | 2 | 3 | 4 |
利潤(rùn)y(單位:百萬(wàn)元) | 4 | 4 | 6 | 6 |
相關(guān)公式: = = , = ﹣ x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,且 =
(1)求A
(2)求cosB+cosC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(1,0),且AC、BC所在直線的斜率之積等于﹣2,記頂點(diǎn)C的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)直線y=2x+m(m∈R且m≠0)與曲線E相交于P、Q兩點(diǎn),點(diǎn)M( ,1),求△MPQ面積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com