【題目】將一枚骰子先后拋擲兩次,觀察向上的點數(shù)

(1)求點數(shù)之和是5的概率;

(2)設a,b分別是將一枚骰子先后拋擲兩次向上的點數(shù),求等式成立的概率.

【答案】(1);(2)

【解析】

試題分析:(1)這是一個古典概型問題,首先應列出將一顆質地均勻的正方體骰子先后拋擲兩次的基本事件的總數(shù),再列出兩次的點數(shù)之和是的事件所包含的基本事件個數(shù),進而即可求得所求的概率;(2)由等式先得到的關系式,再根據(jù)所滿足的關系式列出其包含的基本事件的個數(shù),這樣即可求出所需的結果.

試題解析:將一顆質地均勻的正方體骰子先后拋擲兩次的基本事件總數(shù)為個.

(1)因為事件x+y=5包含(1,4)、(2,3)、(3,2)、(4,1)四個基本事件.

所以事件x+y=5的概率為;

(2)因為事件,即a=b 包含、、、、共6個基本事件,

所以事件的概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln x,g(x)= (a>0),設F(x)=f(x)+g(x).

(1)求函數(shù)F(x)的單調區(qū)間;

(2)若函數(shù)y=F(x)(x∈(0,3])圖像上任意一點P(x0,y0)處的切線的斜率k≤恒成立,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設z1 , z2是復數(shù),則下列命題中的假命題是(
A.若|z1﹣z2|=0,則 =
B.若z1= ,則 =z2
C.若|z1|=|z2|,則z1? =z2?
D.若|z1|=|z2|,則z12=z22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (﹣3x2+3f′(2))dx,則f′(2)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ex﹣ax2 , 曲線y=f(x)在(1,f(1))處的切線方程為y=bx+1.
(1)求a,b的值;
(2)求f(x)在[0,1]上的最大值;
(3)證明:當x>0時,ex+(1﹣e)x﹣xlnx﹣1≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)據(jù)a1,a2,…,an的平均數(shù)為a,方差為s2,則數(shù)據(jù)2a1,2a2,…,2an的平均數(shù)和方差分別為(  )

A. a,s2 B. 2a,s2

C. 2a,2s2 D. 2a,4s2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ex﹣ax2 , 曲線y=f(x)在(1,f(1))處的切線方程為y=bx+1.
(1)求a,b的值;
(2)求f(x)在[0,1]上的最大值;
(3)證明:當x>0時,ex+(1﹣e)x﹣xlnx﹣1≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}為等差數(shù)列,前n項和為Sn(n∈N*),{bn}是首項為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4 . (13分)
(Ⅰ)求{an}和{bn}的通項公式;
(Ⅱ)求數(shù)列{a2nbn}的前n項和(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角△ABC中,a,b,c是角A,B,C的對邊 sinC﹣cosB=cos(A﹣C).
(1)求角A的度數(shù);
(2)若a=2 ,且△ABC的面積是3 ,求b+c.

查看答案和解析>>

同步練習冊答案