14.已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-2
(Ⅰ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函數(shù)y=f(x)與y=g(x)的圖象恰有一個公共點,求實數(shù)a的值.

分析 (I)求導(dǎo)數(shù),再分類討論,確定函數(shù)在區(qū)間上的單調(diào)性,即可求得函數(shù)的最小值;
(II)將函數(shù)圖象只有一個公共點轉(zhuǎn)化為方程只有一根,再分離參數(shù),求出函數(shù)的最小值即可

解答 解:(I)令f'(x)=lnx+1=0,得$x=\frac{1}{e}$.
①當$0<t<\frac{1}{e}$時,函數(shù)f(x)在$(t,\frac{1}{e})$上單調(diào)遞減,在$(\frac{1}{e},t+2)$上單調(diào)遞增,
此時函數(shù)f(x)在區(qū)間[t,t+2]上的最小值為$f(\frac{1}{e})=-\frac{1}{e}$;
②當$t≥\frac{1}{e}$時,函數(shù)f(x)在區(qū)間[t,t+2]上單調(diào)遞增,此時函數(shù)f(x)在區(qū)間[t,t+2]上的最小值為f(t)=tlnt;
(II)由題意得,f(x)-g(x)=xlnx+x2-ax+2=0在(0,+∞)上有且只有一個根,
即$a=lnx+x+\frac{2}{x}$在(0,+∞)上有且只有一個根.令$h(x)=lnx+x+\frac{2}{x}$,
則$h'(x)=\frac{1}{x}+1-\frac{2}{x^2}=\frac{{{x^2}+x-2}}{x^2}=\frac{(x+2)(x-1)}{x^2}$,
易知g(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,所以hmin(x)=h(1)=3,
由題意可知,若使y=f(x)與y=g(x)的圖象恰有一個公共點,則a=hmin(x)=3.

點評 本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性與最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想,綜合性強.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)A,B為兩事件,已知P(A)=0.5,P(B)=0.6,試求:
(1)P(AB)
(2)P(A∪B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的前n項和為Sn=n2+3n+5,則an=$\left\{\begin{array}{l}{9,n=1}\\{2n+2,n≥2,n∈N*}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.用反證法證明命題:“已知a、b是自然數(shù),若a+b≥3,則a、b中至少有一個不小于2”提出的假設(shè)應(yīng)該是( 。
A.a、b都小于2B.a、b至少有一個不小于2
C.a、b至少有兩個不小于2D.a、b至少有一個小于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)$f(x)=\frac{x+1}{x^2},g(x)={log_2}x+m$,若對?x1∈[1,2],?x2[1,4],使得f(x1)≥g(x2),則m的取值范圍是(-∞,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.是否存在實數(shù)a,使得函數(shù)y=cos2x+asinx+$\frac{5a}{8}$-$\frac{5}{2}$在閉區(qū)間[0,π]的最大值是0?若存在,求出對應(yīng)的a的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)函數(shù)f(x)=x2-xlnx+2,若存在區(qū)間$[{a,b}]⊆[{\frac{1}{2},+∞})$,使f(x)在[a,b]上的值域為[k(a+2),k(b+2)],則k的取值范圍為(1,$\frac{9+2ln2}{10}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=4lnx-\frac{1}{2}m{x^2}$(m>0).
(Ⅰ)若m=1,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)g(x)=f(x)-(m-4)x,對于曲線y=g(x)上的兩個不同的點M(x1,g(x1)),N(x2,g(x2)),記直線MN的斜率為k,若k=g'(x0),證明:x1+x2>2x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四邊形ABCD是梯形.四邊形CDEF是矩形.且平面ABCD⊥平面CDEF,∠BAD=90°,AB∥CD,AB=AD=DE=$\frac{1}{2}$CD,M是線段AE上的動點.
(Ⅰ)試確定點M的位置,使AC∥平面DMF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面DMF與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案