5.已知數(shù)列{an}的前n項和為Sn=n2+3n+5,則an=$\left\{\begin{array}{l}{9,n=1}\\{2n+2,n≥2,n∈N*}\end{array}\right.$.

分析 首先根據(jù)Sn=n2+3n+5,求出a1的值,然后利用an=Sn-Sn-1求出當(dāng)n>2時,an的表達式,然后驗證a1的值,最后寫出an的通項公式.

解答 解:∵Sn=n2+3n+5,a1=S1=9,
∴an=Sn-Sn-1=n2+3n+5-[(n-1)2+3(n-1)+5]=2n+2(n>1),
∵當(dāng)n=1時,a1=9≠4,
∴an=$\left\{\begin{array}{l}{9,n=1}\\{2n+2,n≥2,n∈N*}\end{array}\right.$,
故答案為:$\left\{\begin{array}{l}{9,n=1}\\{2n+2,n≥2,n∈N*}\end{array}\right.$.

點評 本題主要考查數(shù)列遞推式的知識點,解答本題的關(guān)鍵是利用an=Sn-Sn-1(n≥2)進行解答,此題難度不大,很容易進行解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax+lnx,a∈R.
(1)求函數(shù)f(x)的極值;
(2)對于曲線上的不同兩點P1(x1,y1),P2(x2,y2),如果存在曲線上的點Q(x0,y0),且x1<x0<x2使得曲線在點Q處的切線l∥P1P2,則稱l為弦P1P2的伴隨直線,特別地,當(dāng)x0=λx1+(1-λ)x2(0<λ<1)時,又稱l為P1P2的λ-伴隨直線.
①求證:曲線y=f(x)的任意一條弦均有伴隨直線,并且伴隨直線是唯一的;
②是否存在曲線C,使得曲線C的任意一條弦均有$\frac{1}{2}$-伴隨直線?若存在,給出一條這樣的曲線,并證明你的結(jié)論;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若不等式|8x+9|<7和不等式ax2+bx>2的解集相等,則實數(shù)a,b的值分別為( 。
A.a=-8,b=-10B.a=-4,b=-9C.a=-1,b=9D.a=-1,b=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知點M,N是拋物線y=4x2上不同的兩點,F(xiàn)為拋物線的焦點,且滿足∠MFN=135°,弦MN的中點P到直線l:y=-$\frac{1}{16}$的距離記為d,|MN|2=λ•d2,則λ的最小值為2+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{ax}{{1+{x^2}}}+1$(a≠0).
(1)已知函數(shù)f(x)在點(0,1)處的斜率為1,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若a>0,g(x)=x2emx,且對任意的x1,x2∈[0,2],f(x1)≥g(x2)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標系xOy中,曲線C1:$\left\{\begin{array}{l}x=rcosθ\\ y=rsinθ\end{array}$(θ為參數(shù),0<r<4),曲線C2:$\left\{\begin{array}{l}x=2+2\sqrt{2}cosθ\\ y=2+2\sqrt{2}sinθ\end{array}$(θ為參數(shù)),以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,射線$θ=α(0<α<\frac{π}{2})$與曲線C1交于N點,與曲線C2交于O,P兩點,且|PN|最大值為2$\sqrt{2}$.
(1)將曲線C1與曲線C2化成極坐標方程,并求r的值;
(2)射線θ=α+$\frac{π}{4}$與曲線C1交于Q點,與曲線C2交于O,M兩點,求四邊形MPNQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1
(1)若$\overrightarrow{a}•\overrightarrow$=1,求$\overrightarrow{a}$與$\overrightarrow$的夾角.
(2)若$\overrightarrow{a}$與$\overrightarrow$的夾角θ為45°,求|$\overrightarrow{a}$-$\overrightarrow$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-2
(Ⅰ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函數(shù)y=f(x)與y=g(x)的圖象恰有一個公共點,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知四棱錐P-ABCD底面ABCD是矩形,PA⊥平面ABCD,AD=4,AB=2,E,F(xiàn)分別是線段AB,BC的中點.
(1)證明:PF⊥FD;
(2)在PA上找一點G,使得EG∥平面PFD;
(3)若PB與平面ABCD所成的角為45°,
①理科做:求二面角P-DE-A的正切值;
②文科做:求點E到平面PFD的距離.

查看答案和解析>>

同步練習(xí)冊答案