函數(shù)f(x)=
(
1
2
)x-1,-1≤x≤0
x2,0<x≤2
,若方程f(x)=x+a恰有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是( 。
A、[-1,
1
4
)
B、[-1,
1
4
]
C、[-
1
4
,2]
D、(-
1
4
,2]

第Ⅱ卷
考點:函數(shù)的零點與方程根的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:問題等價于函數(shù)y=f(x)與y=x+a圖象恰有兩個不同的交點,數(shù)形結(jié)合可得.
解答: 解:方程f(x)=x+a恰有兩個不相等的實數(shù)根
等價于函數(shù)y=f(x)與y=x+a圖象恰有兩個不同的交點,
由圖象可知當(dāng)直線介于兩紅色線之間時符合題意,
∵a為直線的截距,由圖易得上面直線的截距為2,
y=a+a
y=x2
可得x2-x-a=0,由△=0可得a=-
1
4

∴a的取值范圍為:a∈(-
1
4
,2]

故選:D
點評:本題考查函數(shù)的零點,轉(zhuǎn)化和數(shù)形結(jié)合是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計算:(a2-2+a-2)÷(a2-a-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)三視圖知該建筑物共需要
 
個小正方體組成.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1、x2是函數(shù)f(x)=
1
3
x2+
1
2
ax2+2bx(a,b∈R)的兩個極值點,且x1∈(0,1),x2∈(1,2),則4a+3b的取值范圍是( 。
A、(-9,-4)
B、(-8,-4)
C、(-9,-8)
D、(-15,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x3-x=0},則集合A的子集有(  )個.
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
kx2+x,x≤0
f(x-5),x>0
,
(1)若函數(shù)y=f(x)的圖象經(jīng)過點(-1,4),分別求k,f(14)的值;
(2)當(dāng)k<0時,用定義法證明:f(x)在(-∞,0)上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P在直線
x=3+4t
y=1+3t
(t為參數(shù))上,點Q為曲線
x=
5
3
cosθ
y=3sinθ
(θ為參數(shù))上的動點,則|PQ|的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A,B分別是曲線
x=cosθ
y=-1+sinθ
(θ為參數(shù))和ρsin(θ+
π
4
)=
2
2
上的動點,則A,B兩點的最小距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log2(x-1)+
1
2-x
的單調(diào)遞增區(qū)間是(  )
A、(1,2)
B、(1,+∞)
C、(1,2)和(2,+∞)
D、(1,2)或(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案