19.過橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1內(nèi)一點(diǎn)(2,1)的弦被該點(diǎn)平分,則該弦所在直線的斜率是(  )
A.2B.-2C.$-\frac{1}{2}$D.$\frac{1}{2}$

分析 由題意可得設(shè)E(x1,y1),F(xiàn)(x2,y2),代入橢圓方程,兩式相減可得:$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{16}+\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{4}=0$根據(jù)中點(diǎn)坐標(biāo),根據(jù)中點(diǎn)坐標(biāo)公式,求得kEF=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=-$\frac{1}{2}$.

解答 解:設(shè)過點(diǎn)A的直線與橢圓相交于兩點(diǎn),E(x1,y1),F(xiàn)(x2,y2),
則有$\frac{{x}_{1}^{2}}{16}+\frac{{y}_{1}^{2}}{4}=1$①,$\frac{{x}_{2}^{2}}{16}+\frac{{y}_{2}^{2}}{4}=1$②,
①-②式可得$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{16}+\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{4}=0$,又點(diǎn)A為弦EF的中點(diǎn),且A(2,1),
∴x1+x2=4,y1+y2=2,
即得kEF=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=-$\frac{1}{2}$,
該弦所在直線的斜率-$\frac{1}{2}$,
故選:C.

點(diǎn)評(píng) 本題考查直線與橢圓的位置關(guān)系,考查直線的斜率公式,中點(diǎn)坐標(biāo)公式,考查點(diǎn)差法的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.命題“?x∈R,x2+2x+5<0”的否定是( 。
A.?x∈R,x2+2x+5<0B.?x∈R,x2+2x+5≥0C.?x∈R,x2+2x+5≥0D.?x∈R,x2+2x+5≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若函數(shù)y=x2+(a+2)x-3,x∈[a,b]的圖象關(guān)于直線x=1對(duì)稱.
(1)求a、b的值和函數(shù)的零點(diǎn)
(2)當(dāng)函數(shù)f(x)的定義域是[0,3]時(shí),求函數(shù)f(x)的值域..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7..已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0.
(1)判斷直線l與圓C的位置關(guān)系;
(2)若定點(diǎn)P(1,1)分弦AB為$\frac{AP}{PB}$=$\frac{1}{2}$,求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=kx(k≠0),且滿足f(x+1)•f(x)=x2+x,
( I)求函數(shù)f(x)的解析式;
( II)若函數(shù)f(x)為R上的增函數(shù),h(x)=$\frac{f(x)+1}{f(x)-1}$(f(x)≠1),問是否存在實(shí)數(shù)m使得h(x)的定義域和值域都為[m,m+1]?若存在,求出m的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸正半軸的拋物線,經(jīng)過點(diǎn)(3,6),
(1)求拋物線截直線y=2x-6所得的弦長.
(2)討論直線y=kx+1與拋物線的位置關(guān)系,并求出相應(yīng)的k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)M={x|0≤x≤2},N={y|0≤y≤2},給出下列四個(gè)圖形:

其中,能表示從集合M到集合N的函數(shù)關(guān)系的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的實(shí)軸長度為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點(diǎn)A,B,C,D是直角坐標(biāo)系中不同的四點(diǎn),若$\overrightarrow{AC}$=λ$\overrightarrow{AB}$(λ∈R),$\overrightarrow{AD}$=μ$\overrightarrow{AB}$(μ∈R),且$\frac{1}{λ}$+$\frac{1}{μ}$=2,則下列說法正確的是( 。
A.C可能是線段AB的中點(diǎn)
B.D可能是線段AB的中點(diǎn)
C.C、D可能同時(shí)在線段AB上
D.C、D不可能同時(shí)在線段AB的延長線上

查看答案和解析>>

同步練習(xí)冊(cè)答案