【題目】某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”, 全校學(xué)生參加了這次競(jìng)賽.為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì).請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
| 分組 | 頻數(shù) | 頻率 |
第1組 | [50,60) | 8 | 0 16 |
第2組 | [60,70) | a | ▓ |
第3組 | [70,80) | 20 | 0 40 |
第4組 | [80,90) | ▓ | 0 08 |
第5組 | [90,100] | 2 | b |
合計(jì) | ▓ | ▓ |
(1)求出的值;
(2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場(chǎng)參加環(huán)保知識(shí)的志愿宣傳活動(dòng)
(ⅰ)求所抽取的2名同學(xué)中至少有1名同學(xué)來自第5組的概率;
(ⅱ)求所抽取的2名同學(xué)來自同一組的概率
【答案】(1).(2)(ⅰ).(ⅱ)
【解析】試題分析:(1)首先由第一組或第三組可得樣本容量為50 由此可得,由此得第二組的頻率為,所以.由得;(2)(ⅰ)80分以上即在第四組和第五組 第4組共有4人,記為,第5組 共有2人,記為.從這6名同學(xué)中隨機(jī)抽取2名同學(xué)有, 共15種情況.設(shè)“隨機(jī)抽取的2名同學(xué)中至少有1名同學(xué)來自第5組”
有, 共9種情況.由此即可得所求概率 (ⅱ)2名同學(xué)來自同一組有共7種情況.由此可得所求概率
試題解析:(1)由題意可知, . (4分)
(2)(ⅰ)由題意可知,第4組共有4人,記為,第5組共有2人,記為.
從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)有,
共15種情況. (6分)
設(shè)“隨機(jī)抽取的2名同學(xué)中至少有1名同學(xué)來自第5組”為事件,
有, 共9種情況. (9分)
所以隨機(jī)抽取的2名同學(xué)中至少有1名同學(xué)來自第5組的概率是. (10分)
(ⅱ)設(shè)“隨機(jī)抽取的2名同學(xué)來自同一組”為事件,有共7種情況.
所以隨機(jī)抽取的2名同學(xué)來自同一組的概率(12分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左、右焦點(diǎn)分別為, ,點(diǎn)在橢圓上.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在斜率為2的直線,使得當(dāng)直線與橢圓有兩個(gè)不同交點(diǎn)、時(shí),能在直線上找到一點(diǎn),在橢圓上找到一點(diǎn),滿足?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】條件;條件:直線與圓相切,則是的( )
A. 充分必要條件 B. 必要不充分條件
C. 充分不必要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的方程為.
(Ⅰ)寫出直線的普通方程和圓的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)的直角坐標(biāo)為,圓與直線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠修建一個(gè)長(zhǎng)方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價(jià)為120元,池壁每平方米的造價(jià)為100元.設(shè)池底長(zhǎng)方形的長(zhǎng)為x米.
(Ⅰ)求底面積,并用含x的表達(dá)式表示池壁面積;
(Ⅱ)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式,并寫出推理過程;
(2)令,,試比較與的大小,并給出你的證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長(zhǎng)為1的正方體ABCD—A1B1C1D1中,
M、N分別是AB1、BC1的中點(diǎn).
(Ⅰ)求證:直線MN//平面ABCD.
(Ⅱ)求B1到平面A1BC1的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空間中任意放置的棱長(zhǎng)為2的正四面體.下列命題正確的是_________.(寫出所有正確的命題的編號(hào))
①正四面體的主視圖面積可能是;
②正四面體的主視圖面積可能是;
③正四面體的主視圖面積可能是;
④正四面體的主視圖面積可能是2
⑤正四面體的主視圖面積可能是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),對(duì)于函數(shù),稱向量為函數(shù)的伴隨向量,同時(shí)稱函數(shù)為向量的伴隨函數(shù).
(Ⅰ)設(shè)函數(shù),試求的伴隨向量;
(Ⅱ)記向量的伴隨函數(shù)為,求當(dāng)且時(shí)的值;
(Ⅲ)由(Ⅰ)中函數(shù)的圖像(縱坐標(biāo)不變)橫坐標(biāo)伸長(zhǎng)為原來的倍,再把整個(gè)圖像向右平移個(gè)單位長(zhǎng)度得到的圖像。已知 ,問在的圖像上是否存在一點(diǎn),使得.若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com