【題目】各項均為正數(shù)的數(shù)列{an}的首項,前n項和為Sn,且Sn1Snλ..

(1){an}的通項公式;

(2)若數(shù)列{bn}滿足bnλnan,求{bn}的前n項和Tn.

【答案】1an;(2Tn

【解析】

1)由,得到時, 兩式相減得,再由時,得到,即可得到數(shù)列是首項為,公差為的等差數(shù)列,求得其通項公式;

2)由(1),利用乘公比錯位相減法,分類討論,即可求解數(shù)列的前n項和.

1)由題意,知,則當(dāng)時,,

兩式相減得,,可得,

因為數(shù)列的各項均為正數(shù),所以,且,

所以

當(dāng)時,,即,

,所以,所以,

,

所以數(shù)列是首項為,公差為的等差數(shù)列,

所以.

2)由(1),所以,

所以,

,

兩式相減可得

當(dāng)時,可得,即

當(dāng)時,可得,

總上,數(shù)列的前項和為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),,動點(diǎn)滿足直線的斜率之積為,記的軌跡為曲線.

1)求的方程,并說明是什么曲線;

2)過坐標(biāo)原點(diǎn)的直線交、兩點(diǎn),點(diǎn)在第一象限,軸,垂足為,連結(jié)并延長交于點(diǎn),

①證明:是直角三角形;

②求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某射擊小組有甲、乙、丙三名射手,已知甲擊中目標(biāo)的概率是,甲、丙二人都沒有擊中目標(biāo)的概率是,乙、丙二人都擊中目標(biāo)的概率是.甲乙丙是否擊中目標(biāo)相互獨(dú)立.

1)求乙、丙二人各自擊中目標(biāo)的概率;

2)設(shè)乙、丙二人中擊中目標(biāo)的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)求曲線在點(diǎn)處的切線方程;

2)若函數(shù)的圖像有兩個交點(diǎn),它們的橫坐標(biāo)分別為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Ey22px(p>0)的焦點(diǎn)為F,過F且斜率為1的直線交EA,B兩點(diǎn),線段AB的中點(diǎn)為M,其垂直平分線交x軸于點(diǎn)CMNy軸于點(diǎn)N.若四邊形CMNF的面積等于7,則E的方程為(   )

A.y2xB.y22x

C.y24xD.y28x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了豐富學(xué)生活動,在體育課上,體育教師設(shè)計了一個游戲,讓甲、乙、丙三人各抓住橡皮帶的一端,甲站在直角斜邊的中點(diǎn)處,乙站在處,丙站在.游戲開始,甲不動,乙、丙分別以的速度同時出發(fā),勻速跑向終點(diǎn),運(yùn)動過程中繃緊的橡皮帶圍成一個如圖所示的.(規(guī)定:只要有一人跑到終點(diǎn),游戲就結(jié)束,且.已知長為,長為,記經(jīng)過的面積為.

1)求關(guān)于的函數(shù)表示,并求出的取值范圍;

2)當(dāng)游戲進(jìn)行到時,體育教師宣布停止,求此時的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且在上單調(diào)遞減,則的解集為  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系中的坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半抽為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線的參數(shù)方程是為參數(shù)).

1)求曲線的直角坐標(biāo)方程;

2)若直線與曲線交于、兩點(diǎn),且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:①);②當(dāng))時,;③當(dāng))時,,記數(shù)列的前項和為.

1)求,,的值;

2)若,求的最小值;

3)求證:的充要條件是.

查看答案和解析>>

同步練習(xí)冊答案