【題目】已知函數(shù),

1)求曲線在點(diǎn)處的切線方程;

2)若函數(shù)的圖像有兩個交點(diǎn),它們的橫坐標(biāo)分別為,求證:

【答案】(1)(2)證明見解析

【解析】

1)先對函數(shù)求導(dǎo),得到,求出,,進(jìn)而可得出結(jié)果;

2)先令,對函數(shù)求導(dǎo),得到,分別討論,三種情況,用導(dǎo)數(shù)研究函數(shù)單調(diào)性,最值等,即可證明結(jié)論成立.

1)因?yàn)?/span>,

所以

所以,又,

所以切線方程為:,即.

2)令,依題意有兩個零點(diǎn).

,

①當(dāng),則,只有一個零點(diǎn),

②當(dāng),由.

,則,故當(dāng)時,,

因此上單調(diào)遞增.

又當(dāng)時,,所以不存在兩個零點(diǎn).

,則,故當(dāng)時,;

當(dāng)時,.

因此單調(diào)遞減,在)單調(diào)遞增.

又當(dāng)時,,所以不存在兩個零點(diǎn).

③當(dāng),則當(dāng)時,;當(dāng)時,,

所以上單調(diào)遞減,在上單調(diào)遞增.

,取滿足,

存在兩個零點(diǎn);

不妨設(shè),由③知,,上單調(diào)遞減,所以等價于,即.

由于,而

所以.

設(shè),則.

所以當(dāng)時,,而,故當(dāng)時,.

從而,故

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】焦點(diǎn)在軸上的橢圓經(jīng)過點(diǎn),橢圓的離心率為是橢圓的左、右焦點(diǎn),為橢圓上任意點(diǎn).

1)若面積為,求的值;

2)若點(diǎn)的中點(diǎn)(為坐標(biāo)原點(diǎn)),過且平行于的直線交橢圓兩點(diǎn),是否存在實(shí)數(shù),使得;若存在,請求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,且.

(1) 證明數(shù)列是等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;

(2) ,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足:對于任意正數(shù),,都有,,且,則稱函數(shù)速增函數(shù)”.

1)試判斷函數(shù)是否是速增函數(shù);

2)若函數(shù)速增函數(shù),求的取值范圍;

3)若函數(shù)速增函數(shù),且,求證:對任意,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,是某海灣旅游區(qū)的一角,其中,為了營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定在直線海岸上分別修建觀光長廊AC,其中是寬長廊,造價是元/米,是窄長廊,造價是元/米,兩段長廊的總造價為120萬元,同時在線段上靠近點(diǎn)的三等分點(diǎn)處建一個觀光平臺,并建水上直線通道(平臺大小忽略不計(jì)),水上通道的造價是元/米.

(1) 若規(guī)劃在三角形區(qū)域內(nèi)開發(fā)水上游樂項(xiàng)目,要求的面積最大,那么的長度分別為多少米?

(2) 在(1)的條件下,建直線通道還需要多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.卷八中第33問:“今有三角果一垛,底闊每面七個.問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)S為( )

A.28B.56C.84D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】各項(xiàng)均為正數(shù)的數(shù)列{an}的首項(xiàng),前n項(xiàng)和為Sn,且Sn1Snλ..

(1){an}的通項(xiàng)公式;

(2)若數(shù)列{bn}滿足bnλnan,求{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)當(dāng)時,求函數(shù)上的最大值和最小值;

(2)若函數(shù)上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的最大值為,最小值為,則( )

A.存在實(shí)數(shù),使

B.存在實(shí)數(shù),使

C.對任意實(shí)數(shù),有

D.對任意實(shí)數(shù),有

查看答案和解析>>

同步練習(xí)冊答案