【題目】設(shè)函數(shù)的最大值為,最小值為,則( )

A.存在實數(shù),使

B.存在實數(shù),使

C.對任意實數(shù),有

D.對任意實數(shù),有

【答案】A

【解析】

將函數(shù)整理為asinxycosx)=(a2+1)(1y),,再由輔助角公式和正弦函數(shù)的值域,得到不等式,結(jié)合韋達定理及基本不等式,即可得到答案.

yxR),

即有asinxycosx)=(a2+1)(1y),

即為asinxθ)=(a2+1)(1y),θ為輔助角.

xR,|sinxθ|1,

可得|a2+1)(1y||a|,

即有(a2+12y12a21+y2),

化簡可得(a4+a2+1y22a4+3a2+1y+a4+a2+1)≤0,

由于a4+a2+10恒成立,

判別式4a4+3a2+124a4+a2+120恒成立,

即有不等式的解集為[ma),Ma],

由韋達定理可得aR,maMa)=1,且ma+Ma>,ma),Ma)同正,則ma+Ma>,故存在實數(shù),使

故選:A

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)求曲線在點處的切線方程;

2)若函數(shù)的圖像有兩個交點,它們的橫坐標分別為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標系中的坐標原點為極點,軸的正半抽為極軸,建立極坐標系,曲線的極坐標方程是,直線的參數(shù)方程是為參數(shù)).

1)求曲線的直角坐標方程;

2)若直線與曲線交于、兩點,且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的極值;

(2)對,不等式都成立,求整數(shù)k的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)的圖象與的圖象關(guān)于對稱.

1)若關(guān)于的方程上有解,求實數(shù)的取值范圍;

2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的偶函數(shù),滿足,當時,,若,,,則,,的大小關(guān)系為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:①);②當)時,;③當)時,,記數(shù)列的前項和為.

1)求,的值;

2)若,求的最小值;

3)求證:的充要條件是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】安徽懷遠石榴(Punicagranatum)自古就有九州之奇樹,天下之名果的美稱,今年又喜獲豐收.懷遠一中數(shù)學(xué)興趣小組進行社會調(diào)查,了解到某石榴合作社為了實現(xiàn)萬元利潤目標,準備制定激勵銷售人員的獎勵方案:在銷售利潤超過萬元時,按銷售利潤進行獎勵,且獎金(單位:萬元)隨銷售利潤(單位:萬元)的增加而增加,但獎金總數(shù)不超過萬元,同時獎金不能超過利潤的.同學(xué)們利用函數(shù)知識,設(shè)計了如下函數(shù)模型,其中符合合作社要求的是( )(參考數(shù)據(jù):

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的左、右焦點分別為,,離心率為,點在橢圓C上,且,F1MF2的面積為.

(1)求橢圓C的標準方程;

(2)已知直線l與橢圓C交于A,B兩點,,若直線l始終與圓相切,求半徑r的值.

查看答案和解析>>

同步練習冊答案