【題目】安徽懷遠(yuǎn)石榴(Punicagranatum)自古就有“九州之奇樹,天下之名果”的美稱,今年又喜獲豐收.懷遠(yuǎn)一中數(shù)學(xué)興趣小組進(jìn)行社會(huì)調(diào)查,了解到某石榴合作社為了實(shí)現(xiàn)萬(wàn)元利潤(rùn)目標(biāo),準(zhǔn)備制定激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:在銷售利潤(rùn)超過(guò)萬(wàn)元時(shí),按銷售利潤(rùn)進(jìn)行獎(jiǎng)勵(lì),且獎(jiǎng)金(單位:萬(wàn)元)隨銷售利潤(rùn)(單位:萬(wàn)元)的增加而增加,但獎(jiǎng)金總數(shù)不超過(guò)萬(wàn)元,同時(shí)獎(jiǎng)金不能超過(guò)利潤(rùn)的.同學(xué)們利用函數(shù)知識(shí),設(shè)計(jì)了如下函數(shù)模型,其中符合合作社要求的是( )(參考數(shù)據(jù):)
A.B.C.D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
(2)若函數(shù)為上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的最大值為,最小值為,則( )
A.存在實(shí)數(shù),使
B.存在實(shí)數(shù),使
C.對(duì)任意實(shí)數(shù),有
D.對(duì)任意實(shí)數(shù),有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是數(shù)列的前項(xiàng)和,對(duì)任意都有成立(其中是常數(shù)).
(1)當(dāng)時(shí),求:
(2)當(dāng)時(shí),
①若,求數(shù)列的通項(xiàng)公式:
②設(shè)數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“數(shù)列”,如果,試問:是否存在數(shù)列為“數(shù)列”,使得對(duì)任意,都有,且,若存在,求數(shù)列的首項(xiàng)的所有取值構(gòu)成的集合;若不存在.說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),動(dòng)點(diǎn)到點(diǎn)的距離比到軸的距離大1個(gè)單位長(zhǎng)度.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)若過(guò)點(diǎn)的直線與曲線交于,兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,在四棱錐中,面,,,,,,,為的中點(diǎn)。
(1)求證:面;
(2)線段上是否存在一點(diǎn),滿足?若存在,試求出二面角的余弦值;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】朱載堉(1536—1611),明太祖九世孫,音樂家、數(shù)學(xué)家、天文歷算家,在他多達(dá)百萬(wàn)字的著述中以《樂律全書》最為著名,在西方人眼中他是大百科全書式的學(xué)者王子。他對(duì)文藝的最大貢獻(xiàn)是他創(chuàng)建了“十二平均律”,此理論被廣泛應(yīng)用在世界各國(guó)的鍵盤樂器上,包括鋼琴,故朱載堉被譽(yù)為“鋼琴理論的鼻祖”!笆骄伞笔侵敢粋(gè)八度有13個(gè)音,相鄰兩個(gè)音之間的頻率之比相等,且最后一個(gè)音頻率是最初那個(gè)音頻率的2倍,設(shè)第二個(gè)音的頻率為,第八個(gè)音的頻率為,則等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),直線:,點(diǎn)在直線上移動(dòng),是線段與軸的交點(diǎn),動(dòng)點(diǎn)滿足:,.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)若直線與曲線交于,兩點(diǎn),過(guò)點(diǎn)作直線的垂線與曲線相交于,兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,一個(gè)長(zhǎng)軸頂點(diǎn)在直線上,若直線與橢圓交于,兩點(diǎn),為坐標(biāo)原點(diǎn),直線的斜率為,直線的斜率為.
(1)求該橢圓的方程.
(2)若,試問的面積是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com