【題目】在平面直角坐標(biāo)系中,已知點(diǎn),動(dòng)點(diǎn)到點(diǎn)的距離比到軸的距離大1個(gè)單位長(zhǎng)度.

1)求動(dòng)點(diǎn)的軌跡方程

2)若過(guò)點(diǎn)的直線與曲線交于,兩點(diǎn),且,求直線的方程.

【答案】(1) (2) .

【解析】

1)由拋物線定義可知?jiǎng)狱c(diǎn)的軌跡為拋物線,根據(jù)題意可得準(zhǔn)線方程,由準(zhǔn)線方程可求得拋物線的方程.

2)當(dāng)斜率不存在時(shí),帶入檢驗(yàn)是否成立;當(dāng)斜率存在時(shí),設(shè)出直線方程,聯(lián)立拋物線,根據(jù)韋達(dá)定理可得.由向量數(shù)量積定義即可得關(guān)于的方程,解方程即可求得的值.

1)根據(jù)拋物線的定義,知?jiǎng)狱c(diǎn)的軌跡是以為焦點(diǎn),為準(zhǔn)線的拋物線

所以動(dòng)點(diǎn)的軌跡方程為:

2)①當(dāng)的斜率不存在時(shí),可知,不符合條件

②當(dāng)的斜率存在且不為0時(shí),設(shè),

,聯(lián)立可得,

設(shè),,,.

因?yàn)橄蛄?/span>,方向相反,所以

所以,

所以直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為偶函數(shù),且在上單調(diào)遞減,則的解集為  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)的圖象與的圖象關(guān)于對(duì)稱.

1)若關(guān)于的方程上有解,求實(shí)數(shù)的取值范圍;

2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足:①);②當(dāng))時(shí),;③當(dāng))時(shí),,記數(shù)列的前項(xiàng)和為.

1)求,的值;

2)若,求的最小值;

3)求證:的充要條件是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角A,B,C的對(duì)邊分別為ab,c,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】安徽懷遠(yuǎn)石榴(Punicagranatum)自古就有九州之奇樹,天下之名果的美稱,今年又喜獲豐收.懷遠(yuǎn)一中數(shù)學(xué)興趣小組進(jìn)行社會(huì)調(diào)查,了解到某石榴合作社為了實(shí)現(xiàn)萬(wàn)元利潤(rùn)目標(biāo),準(zhǔn)備制定激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:在銷售利潤(rùn)超過(guò)萬(wàn)元時(shí),按銷售利潤(rùn)進(jìn)行獎(jiǎng)勵(lì),且獎(jiǎng)金(單位:萬(wàn)元)隨銷售利潤(rùn)(單位:萬(wàn)元)的增加而增加,但獎(jiǎng)金總數(shù)不超過(guò)萬(wàn)元,同時(shí)獎(jiǎng)金不能超過(guò)利潤(rùn)的.同學(xué)們利用函數(shù)知識(shí),設(shè)計(jì)了如下函數(shù)模型,其中符合合作社要求的是( )(參考數(shù)據(jù):

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐中,平面,,的中點(diǎn),是線段上的一點(diǎn),且.

(1)求證:平面

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐PABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC60°,E,F分別是BCPC的中點(diǎn).

(I)證明:AEPD;

(II)設(shè)ABPA2,

①求異面直線PBAD所成角的正弦值;

②求二面角EAFC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)曲線是焦點(diǎn)在軸上的橢圓,兩個(gè)焦點(diǎn)分別是是,且,是曲線上的任意一點(diǎn),且點(diǎn)到兩個(gè)焦點(diǎn)距離之和為4.

1)求的標(biāo)準(zhǔn)方程;

2)設(shè)的左頂點(diǎn)為,若直線與曲線交于兩點(diǎn),不是左右頂點(diǎn)),且滿足,求證:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案