已知圓C:=0
(1)已知不過(guò)原點(diǎn)的直線與圓C相切,且在軸,軸上的截距相等,求直線的方程;
(2)求經(jīng)過(guò)原點(diǎn)且被圓C截得的線段長(zhǎng)為2的直線方程
(1)或;(2),
解析試題分析:(1)因?yàn)橐阎贿^(guò)原點(diǎn)的直線與圓C相切,且在軸,軸上的截距相等,所以可以假設(shè)所求的直線為,又因?yàn)樵撝本與圓相切所以圓C:=0的圓心(-1,2)到直線的距離等于圓的半徑即可求出的值
(2)求經(jīng)過(guò)原點(diǎn)且被圓C截得的線段長(zhǎng)為2的直線方程,要分兩類i)直線的斜率不存在;ii)直線的斜率存在 再根據(jù)點(diǎn)到直線的距離即可求得結(jié)論
試題解析:(1)∵切線在兩坐標(biāo)軸上截距相等且不為零,設(shè)直線方程為 1分
∴圓心C(-1,2)到切線的距離等于圓半徑, 3分
即= 4分
∴或 5分
所求切線方程為:或 6分
(2)當(dāng)直線斜率不存在時(shí),直線即為y軸,此時(shí),交點(diǎn)坐標(biāo)為(0,1),(0,3),線段長(zhǎng)為2,符合故直線 8分
當(dāng)直線斜率存在時(shí),設(shè)直線方程為,即
由已知得,圓心到直線的距離為1, 9分
則, 11分
直線方程為
綜上,直線方程為, 12分
考點(diǎn):1 點(diǎn)到直線的距離 2 直線與圓的位置關(guān)系 3 直線方程的表示
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上截距相等,求切線的方程;
(2)若為圓C上任意一點(diǎn),求的最大值與最小值;
(3)從圓C外一點(diǎn)P(x,y)向圓引切線PM,M為切點(diǎn),O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求當(dāng)|PM|最小時(shí)的點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知兩點(diǎn)A(-1,2)、B(m,3).
(1)求直線AB的方程;
(2)已知實(shí)數(shù)m∈,求直線AB的傾斜角α的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)A(3,3),B(5,2)到直線l的距離相等,且直線l經(jīng)過(guò)兩直線l1:3x-y-1=0和l2:x+y-3=0的交點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)推導(dǎo)點(diǎn)到直線的距離公式;
(2)已知直線:和:互相平行,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知的頂點(diǎn),的平分線所在直線方程為,邊上的高所在直線方程為.
(1)求頂點(diǎn)的坐標(biāo);
(2)求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
求經(jīng)過(guò)直線的交點(diǎn)M,且滿足下列條件的直線方程:
(1)與直線2x+3y+5=0平行; (2)與直線2x+3y+5=0垂直.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com