【題目】如圖:在四棱錐P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,點(diǎn)M,N分別為BC,PA的中點(diǎn),且PA=AB=2.
(Ⅰ)證明:BC⊥平面AMN;
(Ⅱ)求三棱錐N﹣AMC的體積;
(Ⅲ)在線段PD上是否存在一點(diǎn)E,使得NM∥平面ACE;若存在,求出PE的長;若不存在,說明理由.
【答案】解:(Ⅰ)證明:∵ABCD為菱形,
∴AB=BC
又∠ABC=60°,
∴AB=BC=AC,
又M為BC中點(diǎn),∴BC⊥AM
而PA⊥平面ABCD,BC平面ABCD,∴PA⊥BC
又PA∩AM=A,∴BC⊥平面AMN
(II)∵
又PA⊥底面ABCD,PA=2,∴AN=1
∴三棱錐N﹣AMC的體積 S△AMCAN
=
(III)存在點(diǎn)E,
取PD中點(diǎn)E,連接NE,EC,AE,
∵N,E分別為PA,PD中點(diǎn),
∴
又在菱形ABCD中,
∴ ,即MCEN是平行四邊形
∴NM∥EC,
又EC平面ACE,NM平面ACE
∴MN∥平面ACE,
即在PD上存在一點(diǎn)E,使得NM∥平面ACE,
此時(shí) .
【知識(shí)點(diǎn)】空間中直線與平面之間的位置關(guān)系;棱柱、棱錐、棱臺(tái)的體積
【解析】【分析】(I)要證線與面垂直,只要證明線與面上的兩條相交線垂直,找面上的兩條線,根據(jù)四邊形是一個(gè)菱形,從菱形出發(fā)找到一條,再從PA⊥平面ABCD,得到結(jié)論.(II)要求三棱錐的體積,首先根據(jù)所給的體積確定用哪一個(gè)面做底面,會(huì)使得計(jì)算簡(jiǎn)單一些,選擇三角形AMC,做出底面面積,利用體積公式得到結(jié)果.(III)對(duì)于這種是否存在的問題,首先要觀察出結(jié)論,再進(jìn)行證明,根據(jù)線面平行的判定定理,利用中位線確定線與線平行,得到結(jié)論.
【解析】(I)設(shè)圓心M(a,0),利用M到l:8x﹣6y﹣3=0的距離,求出M坐標(biāo),然后求圓M的方程;(II)設(shè)A(0,t),B(0,t+6)(﹣5≤t≤﹣2),設(shè)AC斜率為k1 , BC斜率為k2 , 推出直線AC、直線BC的方程,求出△ABC的面積S的表達(dá)式,求出面積的最大值和最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l⊥平面α,垂足為O,已知△ABC中,∠ABC為直角,AB=2,BC=1,該直角三角形做符合以下條件的自由運(yùn)動(dòng):(1)A∈l,(2)B∈α.則C、O兩點(diǎn)間的最大距離為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠要建造一個(gè)長方體無蓋貯水池,其容積為6400m3 , 深為4m,如果池底每1m2的造價(jià)為300元,池壁每1m2的造價(jià)為240元,問怎樣設(shè)計(jì)水池能使總造價(jià)最低,最低總造價(jià)是多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:x∈R,都有ax2>﹣ax﹣1(a≠0)恒成立;命題q:圓x2+y2=a2與圓(x+3)2+(y﹣4)2=4外離.如果命題“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,底面為菱形, , , 與相交于點(diǎn),四邊形為直角梯形, , , ,平面底面.
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(20)(本小題滿分13分)
已知函數(shù),,其中是自然對(duì)數(shù)的底數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)令,討論的單調(diào)性并判斷有無極值,有極值時(shí)求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù)的統(tǒng)計(jì)數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時(shí)間內(nèi)加工的合格零件平均數(shù)都為9.
(1)分別求出的值;
(2)分別求出甲、乙兩組技工在單位時(shí)間內(nèi)加工的合格零件的方差和,并由此分析兩組技工的加工水平;
(3)質(zhì)檢部門從該車間甲、乙兩組技工中各隨機(jī)抽取一名技工,對(duì)其加工的零件進(jìn)行檢測(cè),若兩人加工的合格零件個(gè)數(shù)之和大于17,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋擲一枚骰子,當(dāng)它每次落地時(shí),向上一面的點(diǎn)數(shù)稱為該次拋擲的點(diǎn)數(shù),可隨機(jī)出現(xiàn)1到6點(diǎn)中的任一個(gè)結(jié)果.連續(xù)拋擲兩次,第一次拋擲的點(diǎn)數(shù)記為a,第二次拋擲的點(diǎn)數(shù)記為b.
(1)求直線ax+by=0與直線x+2y+1=0平行的概率;
(2)求長度依次為a,b,2的三條線段能構(gòu)成三角形的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,有如下兩個(gè)命題:q:若m⊥α,n⊥β且m∥n,則α∥β;q:若m∥α,n∥β且m∥n,則α∥β.( )
A.命題q,p都正確
B.命題p正確,命題q不正確
C.命題q,p都不正確
D.命題q不正確,命題p正確
查看答案和解析>>