【題目】如圖所示的幾何體中,底面為菱形, , 相交于點,四邊形為直角梯形, , ,平面底面.

(1)證明:平面平面;

(2)求二面角的余弦值.

【答案】(1)見解析;(2).

【解析】試題分析:

(1)利用題意證得平面.由面面垂直的判斷定理可得平面平面.

(2)結(jié)合(1)的結(jié)論和題意建立空間直角坐標(biāo)系,由平面的法向量可得二面角的余弦值為.

試題解析:

(1)因為底面為菱形,所以,

又平面底面,平面平面,

因此平面,從而.

,所以平面,

, , ,

可知, ,

, ,

從而,故.

,所以平面.

平面,所以平面平面.

(2)取中點,由題可知,所以平面,又在菱形中, ,所以分別以, 的方向為, , 軸正方向建立空間直角坐標(biāo)系(如圖示),

, , ,

所以 , .

由(1)可知平面,所以平面的法向量可取為.

設(shè)平面的法向量為,

,得,

所以.

從而 .

故所求的二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2﹣ax+a(x∈R)同時滿足:
①不等式f(x)≤0的解集有且只有一個元素;
②在定義域內(nèi)存在0<x1<x2 , 使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項和Sn=f(n).
(1)求f(x)的表達(dá)式;
(2)求數(shù)列{an}的通項公式;
(3)設(shè) ,cn= ,{cn}的前n項和為Tn , 若Tn>2n+t對任意n∈N,n≥2恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題一定正確的是(
A.在等差數(shù)列{an}中,若ap+aq=ar+aδ , 則p+q=r+δ
B.已知數(shù)列{an}的前n項和為Sn , 若{an}是等比數(shù)列,則Sk , S2k﹣Sk , S3k﹣S2k也是等比數(shù)列
C.在數(shù)列{an}中,若ap+aq=2ar , 則ap , ar , aq成等差數(shù)列
D.在數(shù)列{an}中,若ap?aq=a ,則ap , ar , aq成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求函數(shù)y=sin(2x﹣ )的單調(diào)遞減區(qū)間,并敘述怎樣由函數(shù)y=sinx的圖像變換得到函數(shù)y=sin(2x﹣ )的圖像.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 ,b(sinωx,0),且ω>0,設(shè)函數(shù)f(x)=(a+b)b+k.
(1)若f(x)的圖像中相鄰兩條對稱軸間的距離不小于 ,求ω的取值范圍.
(2)若f(x)的最小正周期為π,且當(dāng) 時,f(x)的最大值是2,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:在四棱錐P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,點M,N分別為BC,PA的中點,且PA=AB=2.
(Ⅰ)證明:BC⊥平面AMN;
(Ⅱ)求三棱錐N﹣AMC的體積;
(Ⅲ)在線段PD上是否存在一點E,使得NM∥平面ACE;若存在,求出PE的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足asinB﹣ bcosA=0
(1)求A;
(2)當(dāng)a= ,b=2時,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個糧食經(jīng)銷商每次在同一糧食生產(chǎn)地以相同的價格購進(jìn)糧食,他們共購進(jìn)糧食兩次,各次的糧食價格不同,甲每次購糧10000千克,乙每次購糧食10000元,在兩次統(tǒng)計中,購糧的平均價格較低的是(
A.甲
B.乙
C.一樣低
D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,已知AB=3,AD=1,E、F分別是AB的兩個三等分點,AC,DF相交于點G,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系:
(1)若動點M到D點距離等于它到C點距離的兩倍,求動點M的軌跡圍成區(qū)域的面積;
(2)證明:E G⊥D F.

查看答案和解析>>

同步練習(xí)冊答案