分析 (Ⅰ)求出曲線C的普通方程,設直線方程為y=$\sqrt{3}x$+b,代入拋物線方程,可得3x2+(2$\sqrt{3}$b-4)x+b2=0,利用△=0,可得M的坐標,即可得出結論;
(Ⅱ)利用參數的幾何意義,結合條件,即可求m的值.
解答 解:(Ⅰ)由曲線C的極坐標方程為$ρ=\frac{8cosθ}{1-cos2θ}$,即ρ(1-cos2θ)=8cosθ,化為ρ2•2sin2θ=8ρcosθ,∴y2=4x.
m=0,直線方程為y=$\sqrt{3}x$+2
設直線方程為y=$\sqrt{3}x$+b,代入拋物線方程,可得3x2+(2$\sqrt{3}$b-4)x+b2=0,
△=(2$\sqrt{3}$b-4)2-12b2=0,∴b=$\frac{\sqrt{3}}{3}$,x=$\frac{1}{3}$,y=$\frac{2\sqrt{3}}{3}$,
∴M($\frac{1}{3}$,$\frac{2\sqrt{3}}{3}$),到直線l的距離最小,最小值為$\frac{|2-\frac{\sqrt{3}}{3}|}{\sqrt{3+1}}$=1-$\frac{\sqrt{3}}{6}$;
(Ⅱ)直線l:$\left\{{\begin{array}{l}{x=m+t}\\{y=2+\sqrt{3}t}\end{array}(t為參數)}\right.$,代入y2=4x.可得3t2+(4$\sqrt{3}$-4)t+4-4m=0
設A,B對應的參數分別為t1,t2,
則t1+t2=$\frac{4-4\sqrt{3}}{3}$,①t1t2=$\frac{4-4m}{3}$②,
∵$\frac{{|{|{PA}|-|{PB}|}|}}{{|{PA}|•|{PB}|}}$=$\frac{{\sqrt{3}-1}}{2}$,P(m,2)且m>1,
∴$\frac{\sqrt{(\frac{4-4\sqrt{3}}{3})^{2}-4•\frac{4-4m}{3}}}{|\frac{4-4m}{3}|}$=$\frac{{\sqrt{3}-1}}{2}$,
∴m=-5-3$\sqrt{3}$+$\sqrt{59+36\sqrt{3}}$.
點評 本題考查了極坐標方程化為直角坐標方程、參數方程化為普通方程、直線與拋物線相切問題轉化為一元二次的判別式滿足的條件,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,0) | B. | (0,-1) | C. | (-$\frac{1}{16}$,0) | D. | (0,-$\frac{1}{16}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
數學成績好 | 數學成績一般 | 總計 | |
物理成績好 | |||
物理成績一般 | |||
總計 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $3\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | 2$\sqrt{2}$+1 | D. | $\frac{{3\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
生二胎 | 不生二胎 | 合計 | |
70后 | 30 | 15 | 45 |
80后 | 45 | 10 | 55 |
合計 | 75 | 25 | 100 |
P(K2>k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com