5.已知f(x)=asinx+bcosx(a>0),且當(dāng)f($\frac{π}{4}$)=$\sqrt{2}$時f(x)的最大值為$\sqrt{10}$.
(1)求a,b的值.
(2)若f(x)=1且x≠kπ,(k∈Z)求sin2x的值.

分析 (1)依題意,可列出關(guān)于a、b的方程組$\left\{\begin{array}{l}{a+b=2}\\{{a}^{2}{+b}^{2}=10}\end{array}\right.$,解之即可;
(2)由f(x)=1且x≠kπ(k∈Z)可求得cosx=$\frac{4}{5}$,sinx=$\frac{3}{5}$,從而可求sin2x的值.

解答 解:(1)由已知可得,a+b=2,a2+b2=10(a>0),
解得a=3,b=-1.
(2)由f(x)=1得,3sinx-cosx=1,
∴3sinx=cosx+1,
平方得,9sin2x=cos2x+2cosx+1,
∴5cos2x+cosx-4=0,
∴cosx=$\frac{4}{5}$(-1舍去),從而sinx=$\frac{3}{5}$,
∴sin2x=2sinxcosx=2×$\frac{4}{5}$×$\frac{3}{5}$=$\frac{24}{25}$.

點評 本題考查三角函數(shù)中的恒等變換應(yīng)用,突出考查函數(shù)與方程思想及運算求解能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{OP}$=(2cos($\frac{π}{2}$+x),1),$\overrightarrow{OQ}$=(sin($\frac{3π}{2}$-x),cos2x),定義函數(shù)f(x)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$
(1)求函數(shù)f(x)的表達(dá)式,并指出其最值;
(2)已知$f(\frac{x}{2})=\frac{1}{5},x∈(-\frac{π}{2},0),求f(-\frac{x}{2})$.
(3)在銳角三角形ABC中,角A,B,C的對邊分別為a,b,c,且f(A)=1,bc=8,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.-330°化成弧度制是( 。
A.$-\frac{4}{3}π$B.$-\frac{5}{3}π$C.$-\frac{7}{6}π$D.$-\frac{11}{6}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.將各項均為正數(shù)的數(shù)列{an}排成如圖所示的三角形數(shù)陣(第n行有n個數(shù),同一行中,下標(biāo)小的數(shù)排在左邊),bn表示數(shù)陣中,第n行、第1列的數(shù).已知數(shù)列{bn}為等比數(shù)列,且從第3行開始,各行均構(gòu)成公差為d的等差數(shù)列(第3行的3個數(shù)構(gòu)成公差為d的等差數(shù)列;第4行的4個數(shù)構(gòu)成公差為d的等差數(shù)列,…),a1=1,a12=17,a18=34.
(1)求數(shù)陣中第m行、第n列的數(shù)A(m,n)(用m,n表示);
(2)求a2014的值;
(3)2014是否在該數(shù)陣中?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)等差數(shù)列{an}的前n和為Sn,若a1=-13,a5+a7=-6,則當(dāng)Sn取最小值時,n等于( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為了對某課題進(jìn)行研究,用分層抽樣方法從三所高校A,B,C的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人):
高校相關(guān)人數(shù)抽取人數(shù)
A18x
B362
C54y
(1)求表中的x和y;
(2)若從高校B,C抽取的人中選2人進(jìn)行專題發(fā)言,求這2人來自不同高校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,已知點A(-1,1)、B(1,1),P是動點,且直線AP與B 的斜率之積等于-$\frac{1}{3}$.
(1)求動點P的軌跡方程;
(2)設(shè)直線AP與BP分別與直線x=3相交于點M、N,試問:是否存在點P使得△PAB 與△PMN的面積相等?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知平面α∥平面β,點A,B∈α,點C,D∈β,且AC∥BD,求證:AC=BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知在直角坐標(biāo)系xOy中,圓錐曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(θ為參數(shù)),直線l經(jīng)過定點P(1,1),傾斜角為$\frac{π}{3}$.
(Ⅰ)寫出直線l的參數(shù)方程和圓錐曲線C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l與圓錐曲線C相交于A,B兩點,求|PA|•|PB|的值.

查看答案和解析>>

同步練習(xí)冊答案