【題目】正三棱柱ABC﹣A1B1C1的棱長都為2,E,F(xiàn),G為 AB,AA1 , A1C1的中點,則B1F 與面GEF成角的正弦值( )

A.
B.
C.
D.

【答案】A
【解析】解:取A1B1中點M,連接EM,則EM∥AA1 , EM⊥平面ABC,連接GM
∵G為A1C1的中點,棱長為
∴GM= B1C1=1,A1G═A1F=1,F(xiàn)G= ,F(xiàn)E= ,GE=
在平面EFG上作FN⊥GE,則∵△GFE是等腰三角形,∴FN= ,
∴SGEF= GE×FN= ,
SEFB1=S正方形ABB1A1﹣SA1B1F﹣SBB1E﹣SAFE=
作GH⊥A1B1 , GH= ,
∴V三棱錐GFEB1= SEFB1×GH= ,
設(shè)B1到平面EFG距離為h,則V三棱錐B1EFG= SGEF= ,
∵V三棱錐GFEB1=V三棱錐B1EFG
,
∴h=
設(shè)B1F與平面GEF成角為θ,
∵B1F=
∴sinθ= =
∴B1F與面GEF所成的角的正弦值為
故選A.

【考點精析】利用空間角的異面直線所成的角對題目進(jìn)行判斷即可得到答案,需要熟知已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(6,2),B(3,2),動點M滿足|MA|=2|MB|.
(1)求點M的軌跡方程;
(2)設(shè)M的軌跡與y軸的交點為P,過P作斜率為k的直線l與M的軌跡交于另一點Q,若C(1,2k+2),求△CPQ面積的最大值,并求出此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線 l1和l2 是異面直線,l1在平面 α內(nèi),l2在平面β內(nèi),l是平面α與平面β的交線,則下列命題正確的是( )
A.l與l1 , l2都不相交
B.l與l1 , l2都相交
C.l至多與l1 , l2中的一條相交
D.l至少與l1 , l2中的一條相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,半徑為R的半圓內(nèi)的陰影部分以直徑AB所在直線為軸,旋轉(zhuǎn)一周得到一幾何體,求該幾何體的表面積(其中∠BAC=30°)及其體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點也是橢圓的一個焦點,的公共弦的長為.

(1)求的方程;

(2)過點的直線相交于,兩點,與相交于,兩點,且同向

)若,求直線的斜率

)設(shè)在點處的切線與軸的交點為,證明:直線繞點旋轉(zhuǎn)時,總是鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為一簡單組合體,其底面ABCD為正方形,棱PD與EC均垂直于底面ABCD,PD=2EC,N為PB的中點,求證:

(1)平面EBC∥平面PDA;
(2)NE⊥平面PDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a=2,A=45°,若此三角形有兩解,則b的取值范圍是(
A.(2,2
B.(2,+∞)
C.(﹣∞,2)
D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2 , a4的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=anlog an , 求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案