【題目】已知點(diǎn)A(6,2),B(3,2),動(dòng)點(diǎn)M滿足|MA|=2|MB|.
(1)求點(diǎn)M的軌跡方程;
(2)設(shè)M的軌跡與y軸的交點(diǎn)為P,過P作斜率為k的直線l與M的軌跡交于另一點(diǎn)Q,若C(1,2k+2),求△CPQ面積的最大值,并求出此時(shí)直線l的方程.
【答案】
(1)解:設(shè)M(x,y),∵|MA|=2|MB|,
∴ =2 ,
化為:(x﹣2)2+(y﹣2)2=4
(2)解:令x=0,解得y=2,∴P(0,2).
直線l的方程為:y=kx+2,(k≠0)代入圓的方程可得:(1+k2)x2﹣4x=0,
解得x=0,或x= .
∴Q .
∴|PQ|= = .
點(diǎn)C到直線l的距離d= = .
∴△CPQ面積S= |PQ|d= × × = = ≤ =1,當(dāng)且僅當(dāng)|k|=1時(shí)取等號(hào).
∴△CPQ面積的最大值1時(shí),此時(shí)直線l的方程為:y=±x+2
【解析】(1)設(shè)M(x,y),由|MA|=2|MB|,利用兩點(diǎn)之間的距離公式即可得出.(2)令x=0,可得P(0,2).直線l的方程為:y=kx+2,(k≠0)代入圓的方程可得:(1+k2)x2﹣4x=0,解出可得Q坐標(biāo),|PQ|.求出點(diǎn)C到直線l的距離d,△CPQ面積S= |PQ|d,再利用基本不等式的性質(zhì)即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=
(1)當(dāng) 時(shí),求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)是(﹣∞,+∞)上的減函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正三棱錐P﹣ABC的底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為8,E,F(xiàn)分別為PB,PC上的動(dòng)點(diǎn),求截面△AEF周長(zhǎng)的最小值,并求出此時(shí)三棱錐P﹣AEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=3,an+1﹣3an=3n(n∈N*),數(shù)列{bn}滿足bn= .
(Ⅰ)求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a、b、c∈Z)是奇函數(shù).
(1)若f(1)=1,f(2)﹣4>0,求f(x);
(2)若b=1,且f(x)>1對(duì)任意的x∈(1,+∞)都成立,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上的拋物線被直線y=2x+1截得的弦長(zhǎng)為 .
(1)求拋物線的方程;
(2)若拋物線與直線y=2x﹣5無公共點(diǎn),試在拋物線上求一點(diǎn),使這點(diǎn)到直線y=2x﹣5的距離最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正三棱柱ABC﹣A1B1C1的棱長(zhǎng)都為2,E,F(xiàn),G為 AB,AA1 , A1C1的中點(diǎn),則B1F 與面GEF成角的正弦值( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)為,其離心率為,又拋物線在點(diǎn)處的切線恰好過橢圓的一個(gè)焦點(diǎn).
(1)求橢圓的方程;
(2)過點(diǎn)斜率為的直線交橢圓于兩點(diǎn),直線的斜率分別為,是否存在常數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com