分析 (Ⅰ)當(dāng)a=1時,不等式|f(x)|+|f(-x)|≥3x即|x-1|+|x+1|≥3x,分類討論,即可解不等式|f(x)|+|f(-x)|≥3x;
(Ⅱ)設(shè)|a|≤1,當(dāng)|x|≤1時,|f(x2)+x|≤|a|(1-x2)+|x|≤1-x2+|x|,即可證明:$|f({x^2})+x|≤\frac{5}{4}$.
解答 解:( I)當(dāng)a=1時,不等式|f(x)|+|f(-x)|≥3x即|x-1|+|x+1|≥3x
當(dāng)x≤-1時,得1-x-x-1≥3x⇒x≤0,∴x≤-1-----------------------------------------(1分)
當(dāng)-1<x<1時,得1-x+x+1≥3x$⇒x≤\frac{2}{3}$,∴$-1<x≤\frac{2}{3}$-----------------------------(2分)
當(dāng)x≥1時,得x-1+x+1≥3x⇒x≤0,與x≥1矛盾,-------------------------------------(3分)
綜上得原不等式的解集為$\{x|x≤-1\}∪\{x|-1<x≤\frac{2}{3}\}$=$\{x|x≤\frac{2}{3}\}$------------------------(5分)
(II)證明:|f(x2)+x|=|a(x2-1)+x|≤|a(x2-1)|+|x|-----------------------------------------------(6分)
∵|a|≤1,|x|≤1
∴|f(x2)+x|≤|a|(1-x2)+|x|≤1-x2+|x|-------------------------------------------------(7分)
=$-|x{|^2}+|x|+1=-{(|x|-\frac{1}{2})^2}+\frac{5}{4}≤\frac{5}{4}$,------------------------------------------(9分)
當(dāng)$|x|=\frac{1}{2}$時取“=”,得證.--------------------------------------------------------------(10分)
點評 本題考查不等式的解法,考查絕對值不等式的性質(zhì),正確轉(zhuǎn)化是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2(e-1)}$ | B. | $\frac{1}{4(e-1)}$ | C. | $\frac{1}{8(e-1)}$ | D. | $\frac{1}{16(e-1)}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
選擇自然科學(xué)類 | 選擇社會科學(xué)類 | 合計 | |
男生 | 60 | 45 | 105 |
女生 | 30 | 45 | 75 |
合計 | 90 | 90 | 180 |
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{4}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{3}}{6}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com