某化工產(chǎn)品受A、B、C三個因素的影響,每個因素有兩個水平,分別用A1、A2,B1、B2,C1、C2表示.分析如下正交試驗結(jié)果表,得到最佳因素組合(最佳因素組合是指實驗結(jié)果最大的因素組合)為( 。
實驗號\列號ABC實驗結(jié)果
1A1B1C179
2A1B2C265
3A2B1C288
4A2B2C181
1水平的平均值7283.580
2水平的平均值84.57376.5
A、(A1,B2,C1
B、(A2,B1,C1
C、(A2,B1,C2
D、(A2,B2,C2
考點:眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計
分析:本題要求的最佳因素組合是指實驗結(jié)果最大的因素組合,從圖表中的實驗結(jié)果一欄可以看出三號實驗試驗結(jié)果是88,是這幾個數(shù)據(jù)中最大的,由此得出結(jié)論.
解答: 解答:解:∵本題要求的最佳因素組合是指實驗結(jié)果最大的因素組合,
而三號實驗試驗結(jié)果是88,是這幾個數(shù)據(jù)中最大的,
是A2,B1,C2組合.
故選:C.
點評:本題考查了對于一組數(shù)據(jù)的分析與判斷問題,這樣的問題通常出現(xiàn)在選擇題或填空題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-1-lnx.
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)比較(1+
1
2!
)(1+
1
3!
)…(1+
1
n!
)與e的大小(n∈N*,n>2,e是自然對數(shù)的底數(shù));
(Ⅲ)對于函數(shù)h(x)和g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,b,使得不等式h(x)≥kx+b和g(x)≤kx+b都成立,則稱直線y=kx+b是函數(shù)h(x)和g(x)的“分界線”.設(shè)函數(shù)h(x)=
1
2
x2,g(x)=e[x-1-f(x)],試問函數(shù)h(x)和g(x)是否存在“分界線”?若存在,求出常數(shù)k,b的值.若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題( 。
①函數(shù)y=x2-5x+4在x∈[-1,1]上的最大值為10,最小值為
9
4
;
②函數(shù)y=2x2-4x+1(2<x<4)的最大值為17,最小值為1;
③函數(shù)y=x3-12x(-3<x<4)的最大值為16,最小值為-16;
④函數(shù)y=x3-12x(-2<x<2)無最大值也無最小值.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域為[0,1],則函數(shù)y=f(x2)及f(2x)+f(x+
2
3
)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

焦距為6,在x軸上的一個焦點與短軸兩端點的連線垂直,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上滿足f(1+x)=2f(1-x)-x2+3x+1,則曲線y=f(x)在點(1,f(1))處的切線方程是( 。
A、3x-y-2=0
B、3x+y-2=0
C、x-y+1=0
D、x-y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+b(a、b∈R).
(1)要使f(x)在區(qū)間(0,1)上單調(diào)遞增,試求a的取值范圍;
(2)當a>0時,試求f(x)的解析式,使f(x)的極大值為
31
27
,極小值為1;
(3)若x∈[0,1]時,f(x)圖象上任意一點處的切線的傾斜角為θ,試求當θ∈[0,
π
4
]時,a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)滿足條件:當x∈R時,恒有f(x+2)=f(x),且0≤x≤1時,有 f(x)單調(diào)遞增,則f(
98
19
),f(
101
17
),f(
106
15
)的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2ωx-
π
6
)+
1
2
(ω>0)最小正周期為π
(Ⅰ)求ω的值,
(Ⅱ)當x∈[0,
3
]時,求f(x)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案