【題目】在直角坐標系中,曲線的普通方程為,直線的參數(shù)方程為(為參數(shù)),其中.以坐標為極點,以軸非負半軸為極軸,建立極坐標系.
(1)求曲線的極坐標方程和直線的普通方程;
(2)設(shè)點,的極坐標方程為,直線與的交點分別為,.當為等腰直角三角形時,求直線的方程.
科目:高中數(shù)學 來源: 題型:
【題目】為助力湖北新冠疫情后的經(jīng)濟復(fù)蘇,某電商平臺為某工廠的產(chǎn)品開設(shè)直播帶貨專場.為了對該產(chǎn)品進行合理定價,用不同的單價在平臺試銷,得到如下數(shù)據(jù):
單價(元/件) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量(萬件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)根據(jù)以上數(shù)據(jù),求關(guān)于的線性回歸方程;
(2)若該產(chǎn)品成本是4元/件,假設(shè)該產(chǎn)品全部賣出,預(yù)測把單價定為多少時,工廠獲得最大利潤?
(參考公式:回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù), .
(1)求的單調(diào)區(qū)間和極值;
(2)證明:若存在零點,則在區(qū)間上僅有一個零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.
(1)求直線的極坐標方程和曲線的參數(shù)方程;
(2)若,直線與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知M是橢圓C:+=1(a>b>0)上一點,F1F2分別為橢圓C的左右焦點,且|F1F2|=2,∠F1MF2=,△F1MF2的面積為.
(1)求橢圓C的方程;
(2)直線l過橢圓C右焦點F2,交該橢圓于AB兩點,AB中點為Q,射線OQ交橢圓于P,記△AOQ的面積為S1,△BPQ的面積為S2,若,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了治理空氣污染,某市設(shè)個監(jiān)測站用于監(jiān)測空氣質(zhì)量指數(shù),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有、、個監(jiān)測站,并以個監(jiān)測站測得的的平均值為依據(jù)播報該市的空氣質(zhì)量.
(1)若某日播報的為,已知輕度污染區(qū)平均值為,中度污染區(qū)平均值為,求重試污染區(qū)平均值;
(2)如圖是年月份天的的頻率分布直方圖,月份僅有天在內(nèi).
①某校參照官方公布的,如果周日小于就組織學生參加戶外活動,以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校學生周日能參加戶外活動的概率;
②環(huán)衛(wèi)部門從月份不小于的數(shù)據(jù)中抽取兩天的數(shù)據(jù)進行研究,求抽取的這兩天中值都在的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出以下三個條件:
①數(shù)列是首項為 2,滿足的數(shù)列;
②數(shù)列是首項為2,滿足(λ∈R)的數(shù)列;
③數(shù)列是首項為2,滿足的數(shù)列..
請從這三個條件中任選一個將下面的題目補充完整,并求解.
設(shè)數(shù)列的前n項和為,與滿足______,記數(shù)列,,求數(shù)列{}的前n項和;
(注:如選擇多個條件分別解答,按第一個解答計分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)函數(shù),當時,恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線,把上各點橫坐標伸長為原來的2倍,縱坐標不變,得到函數(shù)的圖象,關(guān)于有下述四個結(jié)論:
(1)函數(shù)在上是減函數(shù);
(2)方程在內(nèi)有2個根;
(3)函數(shù)(其中)的最小值為;
(4)當,且時,,則.
其中正確結(jié)論的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com