【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且點(diǎn)在直線上.
(1)求的值及直線的直角坐標(biāo)方程;
(2)圓的極坐標(biāo)方程為,試判斷直線與圓的位置關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰直角三角形的斜邊所在直線方程為,其中點(diǎn)在點(diǎn)上方,直角頂點(diǎn)的坐標(biāo)為.
(1)求邊上的高線所在直線的方程;
(2)求等腰直角三角形的外接圓的標(biāo)準(zhǔn)方程;
(3)分別求兩直角邊,所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F為拋物線的焦點(diǎn),A,B,C為該拋物線上三點(diǎn),若,則= ( )
A. 9 B. 6 C. 4 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市化工廠三個車間共有工人1000名,各車間男、女工人數(shù)如下表:已知在全廠工人中隨機(jī)抽取1名,抽到第二車間男工的可能性是0.15.
第一車間 | 第二車間 | 第三車間 | |
女工 | 173 | 100 | y |
男工 | 177 | x | z |
(1)求x的值.
(2)現(xiàn)用分層抽樣的方法在全廠抽取50名工人,則應(yīng)在第三車間抽取多少名工人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線和曲線的直角坐標(biāo)方程,并指明曲線的形狀;
(2)設(shè)直線與曲線交于兩點(diǎn), 為坐標(biāo)原點(diǎn),且,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDNPM中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,AB=AP=2,PM∥AB,PN∥AD,PM=PN=1.
(1)求證:MN⊥PC;
(2)求平面MNC與平面APMB所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),離心率為,動點(diǎn)M(2,t)().
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以OM為直徑且截直線所得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以OM為直徑的圓交于點(diǎn)N,證明線段ON的長為定值,并求出這個定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com