【題目】如圖,在多面體ABCDNPM中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,AB=AP=2,PM∥AB,PN∥AD,PM=PN=1.
(1)求證:MN⊥PC;
(2)求平面MNC與平面APMB所成銳二面角的余弦值.
【答案】(1)見解析;(2)
【解析】試題分析:(1)先利用平行關系證明線線平行,利用菱形的對角線垂直、線面垂直的判定和性質進行證明;(2)建立適當?shù)目臻g直角坐標系,寫出相關點的坐標,求出有關直線的方向向量和平面的法向量,再利用空間向量的夾角公式進行求解.
試題解析:(1)證明:作ME∥PA交AB于E,NF∥PA交AD于F,連接EF,BD,AC.
由PM∥AB,PN∥AD,易得,所以四邊形MEFN是平行四邊形,
所以MN∥EF,因為底面ABCD是菱形,所以AC⊥BD,又易得EF∥BD,所以AC⊥EF,所以AC⊥MN,
因為PA⊥平面ABCD,EF平面ABCD,所以PA⊥EF,所以PA⊥MN,因為AC∩PA=A,
所以MN⊥平面PAC,故MN⊥PC.
(2)建立空間直角坐標系如圖所示,
則C(0,1,0),M,N,A(0,-1,0),P(0,-1,2),B(,0,0),
所以=,=,=(0,0,2),=(,1,0),設平面MNC的法向量為m=(x,y,z),則令z=1,得x=0,y=,所以m=;
設平面APMB的法向量為n=(x1,y1,z1),則
令x1=1,得y1=-,z1=0,所以n=(1,-,0),
設平面MNC與平面APMB所成銳二面角為α,
則cos α===,
所以平面MNC與平面APMB所成銳二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】下列判斷正確的是( )
A.或
B.命題“若都是偶數(shù),則是偶數(shù)”的逆否命題是“若不是偶數(shù),則都不是偶數(shù)”
C.若“或”為假命題,則“非且非”是真命題
D.已知是實數(shù),關于的不等式的解集是空集,必有且
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( )
A. 命題“”,則:“”
B. 命題“若,則”的否命題是真命題
C. 若為假命題,則為假命題
D. 若是的充分不必要條件,則是的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,直線的極坐標方程為,且點在直線上.
(1)求的值及直線的直角坐標方程;
(2)圓的極坐標方程為,試判斷直線與圓的位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程是 (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.
(Ⅰ)求曲線的普通方程與直線的直角坐標方程;
(Ⅱ)已知直線與曲線交于, 兩點,與軸交于點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知不等式。
(1) 若對于所有的實數(shù)x不等式恒成立,求m的取值范圍;
(2) 設不等式對于滿足的一切m的值都成立,求x的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率為80%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4,5,6,7,8表示命中,9,0表示未命中;再以每三個隨機數(shù)為一組,代表三次投籃的結果.經隨機模擬產生了如下20組隨機數(shù):
907 | 966 | 191 | 925 | 271 | 932 | 812 | 458 | 569 | 683 |
431 | 257 | 393 | 027 | 556 | 488 | 730 | 113 | 537 | 989 |
據(jù)此估計,該運動員三次投籃均命中的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com