9.函數(shù)y=xsinx+ln(x2+1)在[-π,π]上的圖象大致為( 。
A.B.C.D.

分析 根據(jù)函數(shù)值的特點(diǎn)即可判斷.

解答 解:當(dāng)0<x≤π時,xsinx≥0,ln(x2+1)>0,
∴y>0,故排除B,C,D,
故選:A

點(diǎn)評 本題考查了函數(shù)的識別,關(guān)鍵是掌握函數(shù)值的變化趨勢,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項和為Sn,且對任意的n∈N*,都有an>0,Sn=$\sqrt{{a_1}^3+{a_2}^3+…+{a_n}^3}$
(I)求a1,a2的值;
(II)求數(shù)列{an}的通項公式an
(III)證明:ln2≤an•ln(1+$\frac{1}{{a}_{n}}$)<ln3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx,g(x)=ex
(1)若函數(shù)y=ax+f(x)在區(qū)間(0,e]上的最大值為-4,求實(shí)數(shù)a的值;
(2)若函數(shù)y=ag(2x)+bg(x)-x有兩個不同的零點(diǎn)x1,x2,x0是x1,x2的等差中項,證明:當(dāng)a>0時,不等式2ag (2x0)+bg(x0)<f(e)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在等差數(shù)列{an}中,a1=1,a5=9,數(shù)列{an}、{bn}滿足$\frac{{a}_{1}}{_{1}}$+$\frac{{a}_{2}}{_{2}}$+$\frac{{a}_{3}}{_{3}}$+…+$\frac{{a}_{n}}{_{n}}$=6-$\frac{{a}_{n+2}}{_{n}}$(n∈N*).
(Ⅰ)求證:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)求數(shù)列{$\frac{2+{a}_{n}}{_{n}}$}的前n項的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0},則M∩N=( 。
A.{-3,-2,-1,0}B.{-2,-1,0}C.{-3,-2,-1}D.{-2,-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}是各項均不為零的等差數(shù)列,Sn為其前n項和,且S2n-1=a${\;}_{n}^{2}$(n∈N*),若不等式$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{{a}_{2}a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$≤nlog${\;}_{\frac{1}{8}}$λ對任意n∈N*恒成立,則實(shí)數(shù)λ的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)$f(x)=\frac{1}{x+2}$,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)${A_n}(n,f(n))(n∈{N^*})$,向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$與$\overrightarrow{i}$的夾角,則使得$\frac{{cos{θ_1}}}{{sin{θ_1}}}+\frac{{cos{θ_2}}}{{sin{θ_2}}}+\frac{{cos{θ_3}}}{{sin{θ_3}}}+…+\frac{{cos{θ_n}}}{{sin{θ_n}}}<t$恒成立的實(shí)  數(shù)t的取值范圍為t≥$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知圓C的圓心在坐標(biāo)軸上,且經(jīng)過點(diǎn)(6,0)及橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$的兩個頂點(diǎn),則該圓的標(biāo)準(zhǔn)方程為( 。
A.(x-2)2+y2=16B.x2+(y-6)2=72C.${(x-\frac{8}{3})^2}+{y^2}=\frac{100}{9}$D.${(x+\frac{8}{3})^2}+{y^2}=\frac{100}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}的前n項和Sn滿足Sn+Sm=Sn+m(n,m∈N*)且a1=5,則a8=(  )
A.40B.35C.12D.5

查看答案和解析>>

同步練習(xí)冊答案