5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且$\frac{{s}_{2016}}{2016}-\frac{{s}_{2015}}{2015}$=3,則a2016-a2014的值為( 。
A.-3B.0C.6D.12

分析 由等差數(shù)列{an}(公差為d)的前n項(xiàng)和為Sn,則$\frac{{S}_{n}}{n}$=a1+$\fracd9cbtbi{2}$(n-1),可得數(shù)列$\{\frac{{S}_{n}}{n}\}$是等差數(shù)列,因此$\fraco9wo7w8{2}$=3,進(jìn)而得出.

解答 解:由等差數(shù)列{an}(公差為d)的前n項(xiàng)和為Sn,則$\frac{{S}_{n}}{n}$=a1+$\fractkqzzff{2}$(n-1),
∴數(shù)列$\{\frac{{S}_{n}}{n}\}$是等差數(shù)列,
∴$\fracrdnohad{2}$=3,d=6
則a2016-a2014=2d=12.
故選:D.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù),命題q:當(dāng)x∈[${\frac{1}{2}$,2]時(shí),函數(shù)f(x)=x+$\frac{1}{x}$>$\frac{1}{c}$恒成立.如果命題p與命題q中有且只有一個(gè)命題為真命題,試求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.?x∈R,ex≥ax+b,則實(shí)數(shù)a,b的乘積a•b的最大值為(  )
A.$\frac{e}{2}$B.2C.1D.$\frac{e}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某市乘坐出租車(chē)的收費(fèi)辦法如表:
(1)不超過(guò)4千米的里程收費(fèi)12元;
(2)超過(guò)4千米的里程按每千米2元收費(fèi)(對(duì)于其中不足千米的部分,若其小于0.5千米則不收費(fèi),若其大于或等于0.5千米則按1千米收費(fèi));
當(dāng)車(chē)程超過(guò)4千米時(shí),另收燃油附加費(fèi)1元.
相應(yīng)系統(tǒng)收費(fèi)的程序框圖如圖所示,其中x(單位:千米)為行駛里程,y(單位:元)為所收費(fèi)用,用[x]表示不大于x的最大整數(shù),則圖中①處應(yīng)填(  )
A.y=2[x+$\frac{1}{2}$]+4B.y=2[x+$\frac{1}{2}$]+5C.y=2[x-$\frac{1}{2}$]+4D.y=2[x+$\frac{1}{2}$]+5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,已知直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,D是棱AA1上的一點(diǎn),M,N分別為BC1AB,的中點(diǎn).
(1)求證:MN∥平面DCC1;
(2)當(dāng)D為AA1的中點(diǎn)時(shí),求三棱錐D-ACN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知△ABC的面積S滿(mǎn)足2-$\sqrt{3}$≤S≤1,且$\overrightarrow{AC}$•$\overrightarrow{CB}$=-2,∠ACB=θ.
(1)若$\overrightarrow m$=(sin2A,cos2A),$\overrightarrow n$=(cos2B,sin2B),求|$\overrightarrow m$+2$\overrightarrow n$|的取值范圍;
(2)求函數(shù)f(θ)=sin(θ+$\frac{π}{4}$)-4$\sqrt{3}$sinθcosθ+cos(θ-$\frac{π}{4}$)-2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-2+\frac{1}{x-2},x>2}\\{-\frac{1}{x-2}-1,1<x<2}\\{-x+1,x≤1}\end{array}\right.$,g(x)=$\frac{1}{3}$x+m,若函數(shù)h(x)=f(x)-g(x)有四個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知偶函數(shù)f(x)(x≠0)的導(dǎo)函數(shù)f′(x),且滿(mǎn)足f(-1)=0,當(dāng)x>0時(shí),2f(x)>xf′(x),則使得f(x)>0成立的取值范圍是( 。
A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=logax(a>0,a≠1)在區(qū)間[2,4]上的最大值與最小值的差為2,則a的值是$\sqrt{2}或\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案