函數(shù)f(x)=cosx+2sinx在區(qū)間[0,
π
2
]上的最小值為
 
考點(diǎn):三角函數(shù)的最值
專題:三角函數(shù)的圖像與性質(zhì)
分析:把函數(shù)化簡得:f(x)=cosx+2sinx=
5
sin(x+θ.),cosθ=
2
5
,sinθ=
1
5
,可判斷θ∈(0,
π
4
)
,再根據(jù)函數(shù)單調(diào)性求出最小值.
解答: 解:∵函數(shù)f(x)=cosx+2sinx=
5
sin(x+θ.),cosθ=
2
5
,sinθ=
1
5
,
∴可判斷θ∈(0,
π
4
),
θ≤x+θ≤
π
2
4
,
∴根據(jù)單調(diào)性可知
當(dāng)x+θ=θ時(shí),f(x)min=
5
sinθ=1,
故答案為:1.
點(diǎn)評(píng):本題考查了三角函數(shù)的性質(zhì),利用單調(diào)性求最值,求最大值容易一些,但是求最小值時(shí)要根據(jù)系數(shù)判斷哪個(gè)地方取到,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABF,點(diǎn)F(2,0),點(diǎn)A,B分別在圖中拋物線y2=8x及圓(x-2)2+y2=16的實(shí)線部分上運(yùn)動(dòng),且AB總是平行于x軸,則△ABF的周長的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
ax(x<0)
(a-3)x+4a(x≥0)
滿足[f(x1)-f(x2)](x1-x2)<0對(duì)定義域中的任意兩個(gè)不相等的x1,x2都成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足約束條件
x≥0
y≤x
2x+y≤0
則z=x+3y的最大值等于( 。
A、9B、0C、27D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,⊙O的直徑AB,BE為圓0的切線,點(diǎn)C為⊙O 上不同于A、B的一點(diǎn),AD為∠BAC的平分線,且分別與BC 交于H,與⊙O交于D,與BE交于E,連結(jié)BD、CD.
(1)求證:∠DBE=∠DBC
(2)若HE=2a,求ED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,1),
b
=(x,1),
u
=
a
+2
b
,
v
=2
a
-
b

(Ⅰ)若
u
v
,求x;
(Ⅱ)若(
a
+
b
)⊥(
a
-
b
),求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)為偶函數(shù),且其圖象上相鄰的一個(gè)最高點(diǎn)和最低點(diǎn)之間的距離為
4+π2

(1)求f(x)的解析式;
(2)若tanα+
1
tanα
=5,求
2
f(2α-
π
4
)-1
1-tanα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
6-x
-3x在區(qū)間[2,4]上的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若b=2,A=120°,三角形的面積S=
3
,則三角形外接圓的半徑為( 。
A、
3
B、2
C、2
3
D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案