函數(shù)f(x)=
滿足[f(x
1)-f(x
2)](x
1-x
2)<0對定義域中的任意兩個(gè)不相等的x
1,x
2都成立,則a的取值范圍是
.
考點(diǎn):分段函數(shù)的應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:首先判斷函數(shù)f(x)在R上單調(diào)遞減,再分別考慮各段的單調(diào)性及分界點(diǎn),得到0<a<1①a-3<0②a0≥(a-3)×0+4a③,求出它們的交集即可.
解答:
解:[f(x
1)-f(x
2)](x
1-x
2)<0對定義域中的任意兩個(gè)不相等的x
1,x
2都成立,
則函數(shù)f(x)在R上遞減,
當(dāng)x<0時(shí),y=a
x,則0<a<1①
當(dāng)x≥0時(shí),y=(a-3)x+4a,則a-3<0②
又a
0≥(a-3)×0+4a③
則由①②③,解得0<a≤
.
故答案為:(0,
].
點(diǎn)評:本題考查分段函數(shù)及運(yùn)用,考查函數(shù)的單調(diào)性及應(yīng)用,注意分界點(diǎn)的情況,考查運(yùn)算能力,屬于中檔題和易錯題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)函數(shù)f(x)=
(1)畫出函數(shù)y=f(x)的圖象.
(2)討論方程|f(x)|=a的解的個(gè)數(shù).(只寫明結(jié)果,無需過程)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
一種產(chǎn)品的產(chǎn)量原來為a,在今后m年內(nèi),計(jì)劃使產(chǎn)量每年比上一年增加p%,則產(chǎn)量y隨年數(shù)x變化的函數(shù)解析式為
,定義域?yàn)?div id="us51cfr" class='quizPutTag' contenteditable='true'>
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的最小正周期和g(x)=tan
x的最小正周期相同,且當(dāng)x=
時(shí)取得最大值4.
(Ⅰ)求f(x)的解析式,并求出其單調(diào)遞減區(qū)間;
(Ⅱ)若
f(α+)=,求sinα的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=sin(ωx+θ),函數(shù)f(x)的圖象關(guān)于點(diǎn)(
,0)對稱,并在x=π處取得最小值,則正實(shí)數(shù)ω的值構(gòu)成的集合為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)函數(shù)f(x)=a-
(1)求函數(shù)f(x)為奇函數(shù)時(shí)a的值.
(2)探索f(x)的單調(diào)性、并運(yùn)用單調(diào)函數(shù)定義給出證明.
(3)當(dāng)f(x)為奇函數(shù)時(shí),關(guān)于x的不等式f(x
2-kx+1)>0恒成立.求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
△ABC的三個(gè)內(nèi)角A、B、C所對邊的長分別為a、b、c,設(shè)向量
=(a+b,c),
=(a-c,a-b),若
∥
,
(1)求角B的大;
(2)求sinA•sinC的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
函數(shù)f(x)=cosx+2sinx在區(qū)間[0,
]上的最小值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
函數(shù)y=x2-2x(-1≤x≤3,x∈Z)的值域是( )
A、[0,3] |
B、[-1,3] |
C、{-1,0,1,2} |
D、{-1,0,3} |
查看答案和解析>>