【題目】在△ABC中,a=x,b=2,B=45°,若此三角形有兩解,則x的取值范圍是(
A.x>2
B.x<2
C.
D.

【答案】C
【解析】解: =2 ∴a=2 sinA
A+C=180°﹣45°=135°
A有兩個(gè)值,則這兩個(gè)值互補(bǔ)
若A≤45°,則C≥90°,
這樣A+B>180°,不成立
∴45°<A<135°
又若A=90,這樣補(bǔ)角也是90°,一解
所以 <sinA<1
a=2 sinA
所以2<a<2
故選C
利用正弦定理和b和sinB求得a和sinA的關(guān)系,利用B求得A+C;要使三角形兩個(gè)這兩個(gè)值互補(bǔ)先看若A≤45°,則和A互補(bǔ)的角大于135°進(jìn)而推斷出A+B>180°與三角形內(nèi)角和矛盾;進(jìn)而可推斷出45°<A<135°若A=90,這樣補(bǔ)角也是90°,一解不符合題意進(jìn)而可推斷出sinA的范圍,利用sinA和a的關(guān)系求得a的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 是坐標(biāo)原點(diǎn), 分別為其左右焦點(diǎn), , 是橢圓上一點(diǎn), 的最大值為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓交于兩點(diǎn),且

(i)求證: 為定值;

(ii)求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與拋物線相切,且與軸的交點(diǎn)為,點(diǎn).若動(dòng)點(diǎn)與兩定點(diǎn)所構(gòu)成三角形的周長(zhǎng)為6.

(Ⅰ) 求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ) 設(shè)斜率為的直線交曲線兩點(diǎn),當(dāng),且位于直線的兩側(cè)時(shí),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),在培訓(xùn)期間他們參加的5次預(yù)寒成績(jī)記錄如下:

甲:82,82,79,95,87

乙:95,75,80,90,85

(1)用莖葉圖表示這兩組數(shù)據(jù);

(2)求甲、乙兩人成績(jī)的平均數(shù)與方差;

(3)若現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選派哪位學(xué)生參加合適,說(shuō)明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,,平面底面.分別是的中點(diǎn),求證:

(Ⅰ)底面

(Ⅱ)平面;

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=2x﹣cosx,{an}是公差為 的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=5π,則[f(a3)]2﹣a1a5=(
A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中, 底面,底面是直角梯形, , ,點(diǎn)上,且

(Ⅰ)已知點(diǎn)上,且,求證:平面平面;

(Ⅱ)當(dāng)二面角的余弦值為多少時(shí),直線與平面所成的角為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,過(guò)點(diǎn)作直線交圓兩點(diǎn),分別過(guò)兩點(diǎn)作圓的切線,當(dāng)兩條切線相交于點(diǎn)時(shí),則點(diǎn)的軌跡方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}中,a1=1,an+an+1=( n , Sn=a1+4a2+42a3+…+4n1an , 類比課本中推導(dǎo)等比數(shù)列前項(xiàng)和公式的方法,可求得5Sn﹣4nan=

查看答案和解析>>

同步練習(xí)冊(cè)答案