【題目】如圖,在四棱錐中,,,,平面底面,.分別是的中點(diǎn),求證:

(Ⅰ)底面;

(Ⅱ)平面;

(Ⅲ)平面平面.

【答案】把平面與平面垂直轉(zhuǎn)化為直線和平面垂直是常見的轉(zhuǎn)化.要證直線和平面垂直,依據(jù)相關(guān)判定定理轉(zhuǎn)化為證明直線和直線垂直.要證直線和平面平行,可以利用直線和平面平行的判定定理完成。證明平面與平面垂直,需要在一個(gè)平面內(nèi)找到一條和另一個(gè)平面垂直的直線,依據(jù)平面與平面垂直的判定定理。

【解析】(Ⅰ)因?yàn)?/span>平面底面,垂直于這兩個(gè)平面的交線,

所以底面.

(Ⅱ)因?yàn)?/span>,,的中點(diǎn)

所以,且.

所以為平行四邊形.

所以,.

又因?yàn)?/span>平面,平面,

所以平面.

(Ⅲ)因?yàn)?/span>,并且為平行四邊形,

所以,.

(Ⅰ)底面,

所以,

所以平面.

所以.

因?yàn)?/span>分別是的中點(diǎn),

所以.

所以.

所以平面.

所以平面平面.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: ()的右焦點(diǎn)為F(2,0),且過點(diǎn)P(2, ). 直線過點(diǎn)F且交橢圓C于A、B兩點(diǎn).

1求橢圓C的方程

2若線段AB的垂直平分線與x軸的交點(diǎn)為M(),求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.若直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,將曲線上所有點(diǎn)的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個(gè)單位得到曲線

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)已知直線與曲線交于兩點(diǎn),點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且不等式f(x)+2x>0的解集為(1,3).
(1)若方程f(x)+6a=0有兩個(gè)相等的實(shí)根,求f(x)的解析式;
(2)若f(x)的最大值為正數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng),則稱點(diǎn)為平面上單調(diào)格點(diǎn):設(shè)

求從區(qū)域中任取一點(diǎn),而該點(diǎn)落在區(qū)域上的概率;

求從區(qū)域中的所有格點(diǎn)中任取一點(diǎn),而該點(diǎn)是區(qū)域上的格點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a=x,b=2,B=45°,若此三角形有兩解,則x的取值范圍是(
A.x>2
B.x<2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寶寶的健康成長是媽媽們最關(guān)心的問題,父母親為嬰兒選擇什么品牌的奶粉一直以來都是育嬰中的一個(gè)重要話題,為了解過程奶粉的知名度和消費(fèi)者的信任度,某調(diào)查小組特別調(diào)查記錄了某大型連鎖超市2015年與2016年這兩年銷售量前5名的五個(gè)品牌奶粉的銷量(單位:罐),繪制如下的管狀圖:

(1)根據(jù)給出的這兩年銷量的管狀圖,對該超市這兩年品牌奶粉銷量的前五強(qiáng)進(jìn)行排名;

(2)分別計(jì)算這5個(gè)品牌奶粉2016年所占總銷量(僅指這5個(gè)品牌奶粉的總銷量)的百分比(百分?jǐn)?shù)精確到各位),并將數(shù)據(jù)填入如下餅狀圖中的括號(hào)內(nèi);

(3)已知該超市2014年飛鶴奶粉的銷量為(單位:罐),試以這3年的銷量得出銷量關(guān)于年份的線性回歸方程,并據(jù)此預(yù)測2017年該超市飛鶴奶粉的銷量.

相關(guān)公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與圓 且與橢圓相交于兩點(diǎn).

(1)若直線恰好經(jīng)過橢圓的左頂點(diǎn),求弦長

(2)設(shè)直線的斜率分別為,判斷是否為定值,并說明理由

(3)求,面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且,記.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案