已知定義在[-1,1]上的函數(shù)f(x)=x2+x2014+1,則不等式f(x-1)>f(2x)的解集為
 
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)條件判斷函數(shù)f(x)是偶函數(shù),根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,即可得到結(jié)論.
解答: 解:∵f(x)=x2+x2014+1,
∴f(-x)=x2+x2014+1=f(x),即函數(shù)f(x)是偶函數(shù),
當(dāng)0≤x≤1時(shí),函數(shù)f(x)為增函數(shù),
則不等式f(x-1)>f(2x)等價(jià)為f(|x-1|)>f(|2x|)
-1≤x-1≤1
-1≤2x≤1
|x-1|>|2x|
,
0≤x≤2
-
1
2
≤x≤
1
2
3x2+2x-1<0
,則
0≤x≤2
-
1
2
≤x≤
1
2
-1<x<
1
3
,
解得0≤x<
1
3
,
故不等式的解集為[0,
1
3
),
故答案為:[0,
1
3
點(diǎn)評(píng):本題主要考查不等式的求解,根據(jù)條件判斷函數(shù)的奇偶性和單調(diào)性是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+2,x<0
x2,0≤x<2
1
2
,x≥2
,若f(x)=2,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x),x∈N,y∈N+滿足:①對(duì)任意x1,x2∈N+且x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)②對(duì)任意n∈N+都有f(f(n))=3n
(1)試證明函數(shù)f(x)為N+上的單調(diào)增函數(shù),
(2)求f(8)+f(18)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若c2=a2+b2+ab,則△ABC是( 。
A、等邊三角形
B、銳角三角形
C、直角三角形
D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)镽,當(dāng)x≥0,f(x)=(
1
2
x-1.
(1)求函數(shù)f(x)的解析式,并判斷函數(shù)在R上的單調(diào)性(不需證明,只需給出結(jié)論);
(2)對(duì)于函數(shù)f(x)是否存在實(shí)數(shù)m,使f(2m-mcosθ)+f(-1-sin2θ)<f(0)對(duì)所有θ∈[0,
π
2
]都成立?若存在,求出符合條件的所有實(shí)數(shù)m的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若
cosA-2cosC
cosB
=
2c-a
b

(1)求
sinC
sinA
的值;
(2)若cosB=
1
4
,b=2,求a和c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件 p:x2-(a+3)x+3a<0,q:x2-7x+10<0,且p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log
x
(2X)
=
1
2
,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn).
(1)3
3
33
63

(2)log53+log5
1
3

(3)lg
300
7
+lg
700
3
+lg100
(4)
sin(π-α)cos(2π-α)
tan(α-π)cos(-α-2π)

查看答案和解析>>

同步練習(xí)冊(cè)答案