A是△BCD平面外的一點(diǎn),E、F分別是BC、AD的中點(diǎn),若AC⊥BD,AC=BD,求EF與BD所成的角.

【答案】分析:取CD的中點(diǎn)G,利用三角形中位線的性質(zhì)找出異面直線成的角∠FEG,把此角放在一個(gè)三角形中,解此三角形,求出此角的大。
解答:解:取CD的中點(diǎn)G,連接EG、FG,
則EG∥BD,
所以相交直線EF與EG所成的銳角或直角即為異面直線EF與BD所成的角.
在Rt△EGF中,求得∠FEG=45°,
即異面直線EF與BD所成的角為45°.
點(diǎn)評(píng):本題考查異面直線及其所成的角,及求異面直線成的角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

11、A是△BCD平面外的一點(diǎn),E、F分別是BC、AD的中點(diǎn),
(1)求證:直線EF與BD是異面直線;
(2)若AC⊥BD,AC=BD,求EF與BD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A是△BCD平面外的一點(diǎn),E、F分別是BC、AD的中點(diǎn),若AC⊥BD,AC=BD,求EF與BD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A是△BCD平面外的一點(diǎn),E、F分別是BC、AD的中點(diǎn).

(1)求證:直線EF與BD是異面直線;

(2)若AC⊥BD,AC=BD,求EF與BD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):9.1 平面、空間兩條直線(解析版) 題型:解答題

A是△BCD平面外的一點(diǎn),E、F分別是BC、AD的中點(diǎn),
(1)求證:直線EF與BD是異面直線;
(2)若AC⊥BD,AC=BD,求EF與BD所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案