【題目】如圖所示,在四棱錐中,四邊形為矩形,為等腰三角形,,平面平面,且,,,分別為,的中點(diǎn).
(1)證明:平面;
(2)證明:平面平面;
(3)求四棱錐的體積.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1)根據(jù)直線與平面平行的判定定理可知只需證與平面內(nèi)一直線平行,連接,根據(jù)中位線可知,平面,平面,即可證明結(jié)論;
(2)根據(jù)面面垂直的性質(zhì)可得平面,又平面,即可證明結(jié)論;
(3)取的中點(diǎn)為,連接,從而得到平面,即為四棱錐的高,最后根據(jù)棱錐的體積公式即可得解.
(1)如圖所示,連接.
∵四邊形為矩形且是的中點(diǎn),
∴也是的中點(diǎn).
又是的中點(diǎn),,
∵平面,平面,∴平面;
(2)證明:∵面平面,,平面平面,
∴平面,
∵平面,∴平面平面;
(3)取的中點(diǎn)為,連接,
∵平面平面,為等腰直角三角形,
∴平面,即為四棱錐的高,
∵,∴,又,
∴四棱錐的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)S為正方形ABCD所在平面外一點(diǎn),△SBC是邊長為2的等邊三角形,點(diǎn)E為線段SB的中點(diǎn).
(1)證明:SD//平面AEC;
(2)若側(cè)面SBC⊥底面ABCD,求平面ACE與平面SCD所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:.
(1)求橢圓C的離心率;
(2)設(shè)分別為橢圓C的左右頂點(diǎn),點(diǎn)P在橢圓C上,直線AP,BP分別與直線相交于點(diǎn)M,N.當(dāng)點(diǎn)P運(yùn)動時,以M,N為直徑的圓是否經(jīng)過軸上的定點(diǎn)?試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在點(diǎn)處的切線方程;
(2)當(dāng)時,證明:;
(3)判斷曲線與是否存在公切線,若存在,說明有幾條,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在處的切線與直線平行,求實(shí)數(shù)的值;
(2)試討論函數(shù)在區(qū)間上的最大值;
(3)若時,函數(shù)恰有兩個零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為:(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,將曲線繞極點(diǎn)順時針旋轉(zhuǎn)后得到曲線的曲線記為.
(1)求曲線和的極坐標(biāo)方程;
(2)設(shè)和的交點(diǎn)為,,求的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】筆、墨、紙、硯是中國獨(dú)有的文書工具,即文房四寶.筆、墨、紙、硯之名,起源于南北朝時期,其中“紙”指的是宣紙,“始于唐代,產(chǎn)于涇縣”,因唐代涇縣隸屬宣州管轄,故因地得名宣紙,宣紙按質(zhì)量等級分類可分為正牌和副牌(優(yōu)等品和合格品)某公司生產(chǎn)的宣紙為純手工制作,年產(chǎn)宣紙10000刀,該公司按照某種質(zhì)量指標(biāo)x給宣紙確定質(zhì)量等級,如下表所示:
x的范圍 | |||
質(zhì)量等級 | 正牌 | 副牌 | 廢品 |
公司在所生產(chǎn)的宣紙中隨機(jī)抽取了一刀(100張)進(jìn)行檢驗(yàn),得到的頻率分布直方圖如上圖所示.已知每張正牌宣紙的利潤為12元,副牌宣紙的利潤為6元,廢品宣紙的利潤為-12元.
(1)試估計該公司生產(chǎn)宣紙的利潤;
(2)該公司預(yù)備購買一種售價為100萬元的機(jī)器改進(jìn)生產(chǎn)工藝,這種機(jī)器使用壽命為一年,不影響產(chǎn)量,這種機(jī)器生產(chǎn)的宣紙的質(zhì)量指標(biāo)x服從正態(tài)分布,改進(jìn)工藝后正牌和副牌宣紙的利潤都將受到不同程度的影響,觀測的數(shù)據(jù)如下表所示:
x的范圍 | ||||
一張宣紙的利潤 | 12 | 8 | 8 | 3 |
頻率 | 0.5 | 0.5 | 0.5 | 0.5 |
將頻率視為概率,請判斷該公司是否應(yīng)該購買這種機(jī)器,并說明理由
附:若,則,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com