【題目】已知函數(shù)f(x)=cos2x,g(x)= sinxcosx.
(1)若直線x=a是函數(shù)y=f(x)的圖象的一條對稱軸,求g(2a)的值;
(2)若0≤x≤ ,求h(x)=f(x)+g(x)的值域.
【答案】
(1)解: ,
其對稱軸為 ,
因為直線線x=a是函數(shù)y=f(x)的圖象的一條對稱軸,
所以 ,
又因為 ,所以
即
(2)解:由(1)得
=
∵ ,
∴ ,
∴ .
所以h(x)的值域為
【解析】(1)利用二倍角公式化簡函數(shù)的表達式,通過直線x=a是函數(shù)y=f(x)的圖象的一條對稱軸,求出a,然后求g(2a)的值;(2)化簡h(x)=f(x)+g(x)為正弦函數(shù)類型,利用角的范圍求出相位的范圍,然后去函數(shù)值域.
【考點精析】本題主要考查了三角函數(shù)的最值的相關知識點,需要掌握函數(shù),當時,取得最小值為;當時,取得最大值為,則,,才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)據(jù)是宜昌市個普通職工的年收入,設這個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個數(shù)據(jù)中,下列說法正確的是( )
A. 年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大
C. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
D. 年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 , ,函數(shù)的圖象過點,點與其相鄰的最高點的距離為.
(1)求的單調遞增區(qū)間;
(2)計算;
(3)設函數(shù),試討論函數(shù)在區(qū)間上的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】心理學家發(fā)現(xiàn)視覺和空間能力與性別有關,某數(shù)學興趣小組為了驗證這個結論,從興趣小組中按分層抽樣的方法抽取50名同學,給所有同學幾何和代數(shù)各一題,讓各位同學自由選擇一道題進行解答.統(tǒng)計情況如下表:(單位:人)
幾何題 | 代數(shù)題 | 總計 | |
男同學 | |||
女同學 | |||
總計 |
(1)能否據(jù)此判斷有的把握認為視覺和空間能力與性別有關?
(2)經(jīng)過多次測試發(fā)現(xiàn):女生甲解答一道幾何題所用的時間在分鐘,女生乙解答一道幾何題所用的時間在分鐘,現(xiàn)甲、乙兩人獨立解答同一道幾何題,求乙比甲先解答完的概率;
(3)現(xiàn)從選擇幾何題的8名女生中任意抽取兩人對她們的答題情況進行研究,記甲、乙兩名女生被抽到的人數(shù)為,求的分布列及數(shù)學期望.
附表及公式
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內角A、B、C的對應邊分別為a、b、c,若向量 =(a﹣b,1)與向量 =(a﹣c,2)共線,且∠A=120°.
(1)a:b:c;
(2)若△ABC外接圓的半徑為14,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點及圓:.
(1)若直線過點且與圓心的距離為1,求直線的方程;
(2)若過點的直線與圓交于、兩點,且,求以為直徑的圓的方程;
(3)若直線與圓交于,兩點,是否存在實數(shù),使得過點的直線垂直平分弦?若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為,則下列結論中不正確的是
A. y與x具有正的線性相關關系
B. 回歸直線過樣本點的中心
C. 若該大學某女生身高增加1 cm,則其體重約增加0.85 kg
D. 若該大學某女生身高為170 cm,則可斷定其體重必為58.79 kg
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com