設(shè)F1、F2分別是橢圓(a>b>0)的左、右焦點(diǎn),若在直線x=上存在P,使線段PF1的中垂線過點(diǎn)F2,則橢圓離心率的取值范圍是(  )
A.B.C.D.
D
設(shè)P,F(xiàn)1P的中點(diǎn)Q的坐標(biāo)為,則kF1P=,kQF2
由kF1P·kQF2=-1,
得y2
因?yàn)閥2≥0,但注意b2+2c2≠0,
所以2c2-b2>0,即3c2-a2>0.
即e2.故<e<1.
當(dāng)b2-2c2=0時(shí),y=0,此時(shí)kQF2不存在,此時(shí)F2為中點(diǎn),-c=2c,得e=.綜上得,≤e<1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過點(diǎn)
(1)求橢圓的方程及其離心率;
(2)過橢圓右焦點(diǎn)的直線(不經(jīng)過點(diǎn))與橢圓交于兩點(diǎn),當(dāng)的平分線為 時(shí),求直線的斜率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,是橢圓的左右焦點(diǎn),且橢圓經(jīng)過點(diǎn).
(1)求該橢圓方程;
(2)過點(diǎn)且傾斜角等于的直線,交橢圓于、兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過點(diǎn)作傾斜角為的直線與曲線C交于不同的兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的左右焦點(diǎn)為、,一直線過交橢圓于、兩點(diǎn),則的周長(zhǎng)為   (  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2013•浙江)如圖,點(diǎn)P(0,﹣1)是橢圓C1+=1(a>b>0)的一個(gè)頂點(diǎn),C1的長(zhǎng)軸是圓C2:x2+y2=4的直徑,l1,l2是過點(diǎn)P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A、B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時(shí)直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓C1=1(a>b>0)的左、右焦點(diǎn)分別為為,恰是拋物線C2的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
(1)求C1的方程;
(2)平面上的點(diǎn)N滿足,直線l∥MN,且與C1交于A,B兩點(diǎn),若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知圓E ,點(diǎn),P是圓E上任意一點(diǎn).線段PF的垂直平分線和半徑PE相交于Q.
(1)求動(dòng)點(diǎn)Q的軌跡的方程;
(2)點(diǎn),,點(diǎn)G是軌跡上的一個(gè)動(dòng)點(diǎn),直線AG與直線相交于點(diǎn)D,試判斷以線段BD為直徑的圓與直線GF的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓的離心率,右焦點(diǎn),方程的兩個(gè)根分別為,則點(diǎn)在(   )
A.圓
B.圓內(nèi)
C.圓
D.以上三種都有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案