已知橢圓經(jīng)過點(diǎn)
(1)求橢圓的方程及其離心率;
(2)過橢圓右焦點(diǎn)的直線(不經(jīng)過點(diǎn))與橢圓交于兩點(diǎn),當(dāng)的平分線為 時(shí),求直線的斜率
(1);(2).

試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程以及幾何性質(zhì)、直線與橢圓相交問題等基礎(chǔ)知識(shí),考查學(xué)生的數(shù)形結(jié)合思想、轉(zhuǎn)化能力、計(jì)算能力.第一問,橢圓過點(diǎn)P,說明點(diǎn)P在橢圓上,符合解析式,即可求出,從而得到橢圓的標(biāo)準(zhǔn)方程,通過橢圓的標(biāo)準(zhǔn)方程得到,,從而得到離心率;第二問,由第一問得到橢圓右焦點(diǎn)F的坐標(biāo),由P、F點(diǎn)坐標(biāo)可知軸,由題意得,令直線AB的方程與橢圓方程聯(lián)立,得到A、B坐標(biāo),結(jié)合P點(diǎn)坐標(biāo),得出代入到中,解出直線AB的斜率k的值.
(1)把點(diǎn)代入,可得
故橢圓的方程為,橢圓的離心率為. ……4分
(2)由(1)知:
當(dāng)的平分線為時(shí),由知:軸.
的斜率分別為.所以,的斜率滿足……6分
設(shè)直線方程為,代入橢圓方程并整理可得,
.      
設(shè),則
,則,
.……………………8分
所以=
  …………11分
.   .             ……………13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,為橢圓在軸正半軸上的焦點(diǎn),、兩點(diǎn)在橢圓上,且,定點(diǎn).
(1)求證:當(dāng)時(shí);
(2)若當(dāng)時(shí)有,求橢圓的方程;
(3)在(2)的橢圓中,當(dāng)、兩點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),試判斷 是否有最大值,若存在,求出最大值,并求出這時(shí)兩點(diǎn)所在直線方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)M(,0),橢圓+y2=1與直線y=k(x+)交于點(diǎn)A、B,則△ABM的周長(zhǎng)為(  )
A.4      B.8     C.12     D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

的切線與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖),雙曲線過點(diǎn)P且離心率為.
(1)求的方程;
(2)橢圓過點(diǎn)P且與有相同的焦點(diǎn),直線的右焦點(diǎn)且與交于A,B兩點(diǎn),若以線段AB為直徑的圓心過點(diǎn)P,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線的準(zhǔn)線與橢圓相切,且該切點(diǎn)與橢圓的兩焦點(diǎn)構(gòu)成的三角形面積為2,則橢圓的離心率是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

[2014·綿陽(yáng)模擬]在平面直角坐標(biāo)系xOy中,橢圓C:=1的左、右焦點(diǎn)分別是F1、F2,P為橢圓C上的一點(diǎn),且PF1⊥PF2,則△PF1F2的面積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.直線與橢圓交于不同兩點(diǎn)、(都在軸上方),且
(1)求橢圓的方程;
(2)當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線方程;
(3)對(duì)于動(dòng)直線,是否存在一個(gè)定點(diǎn),無(wú)論如何變化,直線總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)F1、F2分別是橢圓(a>b>0)的左、右焦點(diǎn),若在直線x=上存在P,使線段PF1的中垂線過點(diǎn)F2,則橢圓離心率的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為橢圓的兩個(gè)焦點(diǎn),過的直線交橢圓于兩點(diǎn),,
(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案