【題目】已知函數(shù).
(1)若曲線在和處的切線相互平行,求的值;
(2)試討論的單調(diào)性;
(3)設(shè),對任意的,均存在,使得.試求實數(shù)的取值范圍.
【答案】f′(x)=ax-(2a+1)+(x>0).
(1) f′(1)=f′(3),解得a=.(4分)
(2) f′(x)=(x>0).
①當(dāng)0<a<時,>2,
在區(qū)間(0,2)和上,f′(x)>0;
在區(qū)間上,f′(x)<0,
故f(x)的單調(diào)遞增區(qū)間是(0,2)和,單調(diào)遞減區(qū)間是.(6分)
②當(dāng)a=時,f′(x)=≥0,故f(x)的單調(diào)遞增區(qū)間是(0,+∞).(8分)
③當(dāng)a>時,0<<2,在區(qū)間和(2,+∞)上,f′(x)>0;在區(qū)間上,f′(x)<0,故f(x)的單調(diào)遞增區(qū)間是和(2,+∞),單調(diào)遞減區(qū)間是.(10分)
(3) 由已知,在(0,2]上有f(x)max<g(x)max.(11分)
由已知,g(x)max=0,由(2)可知,
①當(dāng)0<a≤時,f(x)在(0,2]上單調(diào)遞增,
故f(x)max=f(2)=2a-2(2a+1)+2ln2
=-2a-2+2ln2,
∴-2a-2+2ln2<0,解得a>ln2-1,ln2-1<0,故0<a≤.(13分)
②當(dāng)a>時,f(x)在]上單調(diào)遞增,在]上單調(diào)遞減,
故f(x)max=f=-2--2lna.
由a>可知lna>ln>ln=-1,2lna>-2,-2lna<2,
∴-2-2lna<0,f(x)max<0,(15分)
綜上所述,a>0.(16分)
【解析】
試題(1)先求出函數(shù)的導(dǎo)數(shù),利用條件“曲線在和處的切線相互平行”得到,從而在方程中求出的值;(2)對參數(shù)的符號進(jìn)行分類討論,以確定方程的根是否在定義域內(nèi),并對時,就導(dǎo)數(shù)方程的根與的大小進(jìn)行三種情況的分類討論,從而確定函數(shù)的單調(diào)區(qū)間;(3)將問題中的不等式等價轉(zhuǎn)化為,充分利用(2)的結(jié)論確定函數(shù)在區(qū)間上的最大值,從而求出參數(shù)的取值范圍.
試題解析:函數(shù)定義域為,
(1)∵函數(shù)
依題意,,即,解得;
(2),
①當(dāng)時,,,
在區(qū)間上,;在區(qū)間上,,
故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
②當(dāng)時,,
在區(qū)間和上,;在區(qū)間上,,
故函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;
③當(dāng)時,,故的單調(diào)遞增區(qū)間為;
④當(dāng)時,,
在區(qū)間和上,;在區(qū)間上,,
故函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;
(3)由已知,在(0,2]上有f(x)max<g(x)max.
由已知,g(x)max=0,由(2)可知,
①當(dāng)a≤時,f(x)在(0,2]上單調(diào)遞增,
故f(x)max=f(2)=2a-2(2a+1)+2ln2
=-2a-2+2ln2,
∴-2a-2+2ln2<0,解得a>ln2-1,ln2-1<0,故ln2-1<a≤.
②當(dāng)a>時,f(x)在]上單調(diào)遞增,在]上單調(diào)遞減,
故f(x)max=f=-2--2lna.
由a>可知lna>ln>ln=-1,2lna>-2,-2lna<2,
∴-2-2lna<0,即f(x)max<0,符合題意。
綜上所述,a>ln2-1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項和為Sn.
(1)求an及Sn;
(2)令bn=(n∈N*),求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于的不等式的解集為,的解集為.
(1)試求和;
(2)是否存在實數(shù),使得?若存在,求的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直平行六面體中,為棱上任意一點,為底面(除外)上一點,已知在底面上的射影為,若再增加一個條件,就能得到,現(xiàn)給出以下條件:
①;②在上;③平面;④直線和在平面的射影為同一條直線.其中一定能成為增加條件的是__________.(把你認(rèn)為正確的都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)在處的切線與直線平行.
(1)求實數(shù);
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè),當(dāng)時, 恒成立,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】質(zhì)監(jiān)部門從某超市銷售的甲、乙兩種食用油中分別各隨機(jī)抽取100桶檢測某項質(zhì)量指標(biāo),由檢測結(jié)果得到如下的頻率分布直方圖:
(Ⅰ)寫出頻率分布直方圖(甲)中的值;記甲、乙兩種食用油100桶樣本的質(zhì)量指標(biāo)的方差分別為,,試比較,的大。ㄖ灰髮懗龃鸢福;
(Ⅱ)估計在甲、乙兩種食用油中隨機(jī)抽取1捅,恰有一桶的質(zhì)量指標(biāo)大于20;
(Ⅲ)由頻率分布直方圖可以認(rèn)為,乙種食用油的質(zhì)量指標(biāo)值服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本方差,設(shè)表示從乙種食用油中隨機(jī)抽取10桶,其質(zhì)量指標(biāo)值位于(14.55,38.45)的桶數(shù),求的數(shù)學(xué)期望.
注:①同一組數(shù)據(jù)用該區(qū)問的中點值作代表,計算得
②若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一盒中裝有9張各寫有一個數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.
(Ⅰ)求所取3張卡片上的數(shù)字完全相同的概率;
(Ⅱ)表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學(xué)期望.
(注:若三個數(shù)滿足,則稱為這三個數(shù)的中位數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中, , , , 是中點(如圖1).將沿折起到圖2中的位置,得到四棱錐.
(1)將沿折起的過程中, 平面是否成立?并證明你的結(jié)論;
(2)若,過的平面交于點,且為的中點,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),它與曲線
C:(y-2)2-x2=1交于A、B兩點.
(1)求|AB|的長;
(2)在以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點P的極坐標(biāo)為,求點P到線段AB中點M的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com