【題目】已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn

(1)求an及Sn

(2)令bn(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

【答案】(1) an=2n+1,Sn=n2+2n.

(2) Tn.

【解析】

試題分析:(1)設(shè)數(shù)列{an}的首項(xiàng)及公差d,將d來(lái)表示,列出方程組,可解出d,再由通項(xiàng)公式及前n項(xiàng)公式求出;(2)將代入所給表達(dá)式可求出的表達(dá)式,用裂項(xiàng)求和可求出

試題解析:(1)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,由于a37,a5a726,

所以a12d7,2a110d26,

解得a13,d2

由于ana1+(n1d,Sn,

所以an2n1Snnn2).

2)因?yàn)?/span>an2n1,所以14nn1),

因此bn

Tnb1b2bn

所以數(shù)列{bn}的前n項(xiàng)和

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直三棱柱中,為等腰直角三角形,,且,分別為,,的中點(diǎn).

(1)求證:直線平面;

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為 為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)當(dāng)時(shí),求曲線上的點(diǎn)到直線的距離的最大值;

(2)若曲線上的所有點(diǎn)都在直線的下方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)站調(diào)查2016年大學(xué)畢業(yè)生就業(yè)狀況,其中一項(xiàng)數(shù)據(jù)顯示“2016年就業(yè)率最高學(xué)科”為管理學(xué),高達(dá)(數(shù)據(jù)來(lái)源于網(wǎng)絡(luò),僅供參考).為了解高三學(xué)生對(duì)“管理學(xué)”的興趣程度,某校學(xué)生社團(tuán)在高校高三文科班進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷共100道選擇題,每題1分,總分100分,社團(tuán)隨機(jī)抽取了100名學(xué)生的問(wèn)卷成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì),得到頻率分布表如下:

組號(hào)

分組

男生

女生

頻數(shù)

頻率

第一組

3

2

5

0.05

第二組

17

第三組

20

10

30

0.3

第四組

6

18

24

0.24

第五組

4

12

16

0.16

合計(jì)

50

50

100

1

(1)求頻率分布表中 , 的值;

(2)若將得分不低于60分的稱為“管理學(xué)意向”學(xué)生,將低于60分的稱為“非管理學(xué)意向”學(xué)生,根據(jù)條件完成下面列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為是否為“管理學(xué)意向”與性別有關(guān)?

非管理學(xué)意向

管理學(xué)意向

合計(jì)

男生

女生

合計(jì)

(3)心理咨詢師認(rèn)為得分低于20分的學(xué)生可能“選擇困難”,要從“選擇困難”的5名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行心理輔導(dǎo),求恰好有1名男生,1名女生被選中的概率.

參考公式: ,其中

參考臨界值:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,直線不過(guò)原點(diǎn)且不平行于坐標(biāo)軸,交于、兩點(diǎn),線段的中點(diǎn)為

(1)證明直線的斜率與的斜率的乘積為定值;

(2)過(guò)點(diǎn),延長(zhǎng)線段交于點(diǎn),四邊形能否為平行四邊形?若能,求出的方程;若不能,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中).

(1)當(dāng)時(shí),求函數(shù)的圖像在處的切線方程;

(2)若恒成立,求的取值范圍;

(3)設(shè),且函數(shù)有極大值點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為2,過(guò)短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)的圓的面積為,過(guò)橢圓的右焦點(diǎn)作斜率為的直線與橢圓相交于兩點(diǎn),線段的中點(diǎn)為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)垂直于的直線與軸交于點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列判斷中正確的是( )

A. “若,則有實(shí)數(shù)根”的逆否命題是假命題

B. ”是“直線與直線平行”的充要條件

C. 命題“”是真命題

D. 命題“”在時(shí)是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若曲線處的切線相互平行,求的值;

2)試討論的單調(diào)性;

3)設(shè),對(duì)任意的,均存在,使得.試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案