【題目】已知函數(shù),若,且,則的取值范圍是( )
A. B. C. D.
【答案】A
【解析】
作出函數(shù)f(x)的圖象如圖,
若m<n,且f(m)=f(n),
則當(dāng)ln(x+1)=1時,得x+1=e,即x=e1,
則滿足0<ne1,2<m0,
則ln(n+1)= m+1,即m=2ln(n+1)2,
則nm=n+22ln(n+1),
設(shè)h(n)=n+22ln(n+1),0<ne1
則 ,
當(dāng)h′(x)>0得1<ne1,
當(dāng)h′(x)<0得0<n<1,
即當(dāng)n=1時,函數(shù)h(n)取得最小值h(1)=1+22ln2=32ln2,
當(dāng)n=0時,h(0)=22ln1=2,
當(dāng)n=e1時,h(e1)=e1+22ln(e1+1)=1+e2=e1<2,
則32ln2h(n)<2,
即nm的取值范圍是[32ln2,2),
本題選擇A選項.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二(4)班有男生28人,女生21人,用分層抽樣的方法從全班學(xué)生中抽取一個調(diào)查小組,調(diào)查該校學(xué)生對2013年1月1日起執(zhí)行的新交規(guī)的知曉情況,已知某男生被抽中的概率為 ,則抽取的女生人數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的定義域為().
(1)當(dāng)時,求函數(shù)的值域;
(2)若函數(shù)在定義域上是減函數(shù),求的取值范圍;
(3)求函數(shù)在定義域上的最大值及最小值,并求出函數(shù)取最值時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知極坐標系的極點在平面直角坐標系的原點處,極軸與軸的正半軸重合,且長度單位相同;曲線 的方程是,直線的參數(shù)方程為(為參數(shù),),設(shè), 直線與曲線交于 兩點.
(1)當(dāng)時,求的長度;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,我國南海某處的一個圓形海域上有四個小島,小島B與小島A、小島C相距都為5n mile,與小島D相距為 n mile.小島A對小島B與D的視角為鈍角,且 .
(Ⅰ)求小島A與小島D之間的距離和四個小島所形成的四邊形的面積;
(Ⅱ)記小島D對小島B與C的視角為α,小島B對小島C與D的視角為β,求sin(2α+β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知曲線(為參數(shù)),在以原點為極點, 軸的非負半軸為極軸建立的機坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的直角坐標方程;
(2)過點且與直線平行的直線交于兩點,求點到兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的方程為:x2+y2﹣2x﹣4y+m=0.
(1)求m的取值范圍;
(2)若圓C與直線3x+4y﹣6=0交于M、N兩點,且|MN|=2 ,求m的值;
(3)設(shè)直線x﹣y﹣1=0與圓C交于A、B兩點,是否存在實數(shù)m,使得以AB為直徑的圓過原點,若存在,求出實數(shù)m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合M={(x,y)|y= },N={(x,y)|x﹣y+m=0},若M∩N的子集恰有4個,則m的取值范圍是( )
A.(﹣2 ,2 )
B.[﹣2,2 )
C.(﹣2 ,﹣2]
D.[2,2 )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過拋物線C的焦點,且與C的對稱軸垂直.l與C交于A,B兩點,|AB|=12,P為C的準線上一點,則△ABP的面積為( )
A.18
B.24
C.36
D.48
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com