1.給出下列四個命題,其中不正確的命題為( 。
A.已知cos θ•tan θ<0,那么角θ是第三或第四象限角
B.函數(shù)y=2cos(2x+$\frac{π}{3}$)的圖象關于x=$\frac{π}{12}$對稱
C.sin20°cos10°-cos160°sin10°=$\frac{1}{2}$
D.函數(shù)y=|sinx|是周期函數(shù),且周期為π

分析 由正弦函數(shù)的符號可判斷A,由余弦函數(shù)的對稱性可判斷B,直接利用誘導公式以及兩角和的正弦函數(shù),化簡求解可判斷C,根據(jù)正弦函數(shù)的周期性可判斷D,進而得到結論.

解答 解:對于A:∵cosθ•tanθ=cosθ•$\frac{sinθ}{cosθ}$=sinθ<0且cosθ≠0,∴角θ是第三或第四象限角,故A正確;
對于B:y=2cos(2x+$\frac{π}{3}$)的圖象關于($\frac{π}{12}$,0)中心對稱,故B不正確;
對于C:sin20°cos10°-cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=$\frac{1}{2}$,故C正確;
對于D:函數(shù)y=|sinx|是周期函數(shù),且周期為π,故D正確.
故選:B.

點評 本題考查的知識點是命題的真假判斷與應用,三角函數(shù)的周期性及其求法,正弦函數(shù)的符號,余弦函數(shù)的對稱性,誘導公式以及兩角和的正弦函數(shù),是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.在等比數(shù)列{an}中,a1+a3=10,a4+a6=$\frac{5}{4}$.Sn是數(shù)列{an}的前n項的和,求a5和S6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=|x+2|+|ax-4|.
(Ⅰ)若a=1,存在x∈R使f(x)<c成立,求c的取值范圍;
(Ⅱ)若a=2,解不等式f(x)≥5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若拋物線y2=8x上一點P到其焦點的距離為8,則點P到其準線的距離為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.等差數(shù)列{an}中,a7+a9=16,a4=1,則a16的值是( 。
A.22B.16C.15D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設x,y均為正實數(shù),則當($\frac{1}{x}$+$\frac{1}{y}$)(4x+y)取得最小值時,$\frac{y}{x}$=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的左、右焦點分別為F1,F(xiàn)2,直線y=x-1過橢圓的右焦點F2且與橢圓交于P,Q兩點,若△F1PQ的周長為4$\sqrt{2}$.
(1)求橢圓C的方程;
(2)過點M(2,0)的直線l與橢圓C交于不同兩點E,F(xiàn),求$\overrightarrow{ME}$•$\overrightarrow{MF}$取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖,曲線f(x)=x2和g(x)=2x圍成幾何圖形的面積是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,將一副三角板拼接,使他們有公共邊BC,且使這兩個三角形所在的平面互相垂直,∠BAC=∠CBD=90°,AB=AC,∠BCD=30°,BC=6.
(Ⅰ)證明:DB⊥AB;
(Ⅱ)求點C到平面ADB的距離.

查看答案和解析>>

同步練習冊答案