現(xiàn)在要建造一個(gè)長(zhǎng)方體游泳池,其容積為200m3,深為2m.如果池底每平方米的造價(jià)為200元,池壁每平方米的造價(jià)為150元,問(wèn):怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低總造價(jià)是多少元?
考點(diǎn):基本不等式在最值問(wèn)題中的應(yīng)用
專題:應(yīng)用題,不等式的解法及應(yīng)用
分析:設(shè)底面的長(zhǎng)與寬分別為xm,ym,水池總造價(jià)為z元,建立函數(shù)關(guān)系式,求出z的最小值.
解答: 解:設(shè)底面的長(zhǎng)為xm,寬為ym,水池總造價(jià)為z元,
則由容積為200m3,可得:2xy=200,因此xy=100,
z=200×100+150(2×2x+2×2y)=20000+600(x+y)≥20000+600•2
xy
=32000
當(dāng)且僅當(dāng)x=y=10時(shí),取等號(hào).
所以,將水池的地面設(shè)計(jì)成邊長(zhǎng)為10m的正方形時(shí)總造價(jià)最低,最低總造價(jià)為32000元.
點(diǎn)評(píng):此題首先需要由實(shí)際問(wèn)題向數(shù)學(xué)問(wèn)題轉(zhuǎn)化,即建立函數(shù)關(guān)系式,然后求函數(shù)的最值,其中用到了均值不等式定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理) 定義在(-1,1)上的偶函數(shù)f(x)在(0,1)上是減函數(shù),且滿足f(a-1)-f(2-a)<0,則實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=|3x-1|+ax+3有最小值,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足xy+9=6x+2y,且x>2,則xy的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若m+n=1(mn>0),則
1
m
+
1
n
的最小值為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若各項(xiàng)均為正數(shù)的等比數(shù)列{an}滿足a2=1,a3a7-a5=56,其前n項(xiàng)的和為Sn,則S5=(  )
A、31
B、
29
2
C、
31
2
D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=xex在點(diǎn)(1,f(1))處的切線的斜率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)(3-x)(1+2x)5的展開(kāi)式中x2項(xiàng)的系數(shù)是
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2+x,x<0
-x2,x≥0
,則f(f(-2))=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案