【題目】某市居民自來水收費標(biāo)準(zhǔn)如下:每戶每月用水不超過4噸時,每噸為元,當(dāng)用水超過4噸時,超過部分每噸為元,每月甲、乙兩戶共交水費元,已知甲、乙兩戶該月用水量分別為.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)若甲、乙兩戶該月共交水費元,分別求出甲、乙兩戶該月的用水量.
【答案】(1);(2)甲戶用水量為7.5噸,乙戶用水量為4.5噸
【解析】
(1)由題意知:x≥0,令5x=4,得x=;令3x=4,得x=.將x取值范圍分三段,求對應(yīng)函數(shù)解析式可得答案.
(2)在分段函數(shù)各定義域上討論函數(shù)值對應(yīng)的x的值.
(1)由題意知,x≥0,令5x=4,得x=;令3x=4,得x=.
則當(dāng)0≤x≤時,
y=(5x+3x)×1.8=14.4x,
當(dāng)<x≤時,
y=4×1.8+(x)×5×3+3x1.8=20.4x4.8,
當(dāng)x>時,y=(4+4)×1.8+()×5×3+3×5(x)+3×3(x)=24x9.6,
即得;
(2)由于y=f(x)在各段區(qū)間上均單增,
當(dāng)0≤x≤時,y≤f()<26.4,
當(dāng)<x≤時,y≤f()<26.4,
當(dāng)x>時,令24x9.6=26.4,得x=1.5,
所以甲戶用水量為5x=7.5噸,付費S1=4×1.8+3.5×3=17.70元
乙戶用水量為3x=4.5噸,付費S2=8.7元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國有個名句“運籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫 子算經(jīng)》中記載的算籌,古代是用算籌來進(jìn)行計算,算籌是將幾寸長的小竹棍擺在平面上進(jìn)行運算,算籌的擺放形式有縱橫兩種形式,如下表:
表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排 列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如2268用算籌表示就是=||丄|||.執(zhí)行如圖所示程序框 圖,若輸人的x=1, y = 2,則輸出的S用算籌表示為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面PAC⊥平面ABC,是以AC為斜邊的等腰直角三角形,E,F,O分別為PA,PB,AC的中點,.
(1)設(shè)G是OC的中點,證明:∥平面;
(2)證明:在內(nèi)存在一點M,使FM⊥平面BOE,求點M到OA,OB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐底面的3個頂點在球的同一個大圓上,且為正三角形,為該球面上的點,若三棱錐體積的最大值為,則球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年10月中上旬是小麥的最佳種植時間,但小麥的發(fā)芽會受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):
溫差 | 8 | 10 | 11 | 12 | 13 |
發(fā)芽數(shù)(顆) | 79 | 81 | 85 | 86 | 90 |
(1)請根據(jù)統(tǒng)計的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由(1)中的線性回歸方程得到的估計值與前兩組數(shù)據(jù)的實際值誤差均不超過兩顆,則認(rèn)為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;
(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當(dāng)發(fā)芽率為時,平均每畝地的收益為元,某農(nóng)場有土地10萬畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計該農(nóng)場種植小麥所獲得的收益.
附:在線性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)曲線與曲線的交點分別為,求的最大值及此時直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當(dāng)運動時,下列結(jié)論中不正確的是
A. 在內(nèi)總存在與平面平行的線段
B. 平面平面
C. 三棱錐的體積為定值
D. 可能為直角三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com