如圖,一個(gè)棱長為2的正四面體ABCD的兩個(gè)頂點(diǎn)A,B分別在一個(gè)直角(∠EOF)的兩邊OE,OF上運(yùn)動(dòng),M是棱CD的中點(diǎn),設(shè)點(diǎn)M與O點(diǎn)的距離為d,則d的取值范圍是
 
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算
專題:空間位置關(guān)系與距離
分析:固定正四面體ABCD的位置,則原點(diǎn)O在以AB為直徑的球面上運(yùn)動(dòng),所以原點(diǎn)O到直線CD的最近距離為點(diǎn)M到直線CD的距離減去球M的半徑,求解即可.
解答: 解:如圖,若固定正四面體ABCD的位置,則原點(diǎn)O在以AB為直徑的球面上運(yùn)動(dòng),
設(shè)AB中點(diǎn)為N,則原點(diǎn)到直線CD的最近距離d等于點(diǎn)N到直線CD的距離減去球N的半徑r=
AB
2
=1,
MB=
3
,NB=1,所以根據(jù)勾股定理得出:MN=
3-1
=
2
,
所求距離的最小值為:d=
2
-1

所求距離的最大值為d=
2
+1

故答案為:[
2
-1
,
2
+1
].
點(diǎn)評(píng):本題考查空間想象能力,轉(zhuǎn)化思想的應(yīng)用,考查分析問題解決問題的能力與計(jì)算能力,構(gòu)造空間幾何體,運(yùn)用幾何體之間的關(guān)系求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-x2+2x<0},B={y|y=2x},R是實(shí)數(shù)集,則(∁RB)∩A等于( 。
A、[0,1]
B、(-∞,0)
C、(-∞,0]
D、(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)與y=2sin(ωx+φ)(ω>0,|φ|<
π
2
)的圖象,那么( 。
A、ω=2,φ=-
π
6
B、ω=2,φ=
π
6
C、φ=
10
11
,φ=
π
6
D、ω=
10
11
,φ=-
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是坐標(biāo)原點(diǎn),A,B是直線l:x-y+t=0與圓C:x2+y2=4的兩個(gè)不同交點(diǎn),若|
AB
|
|
OA
+
OB
|
,則實(shí)數(shù)t的取值范圍是( 。
A、(-2
2
,-2]
B、[2,2
2
C、(-2
2
,-2]∪[2,2
2
D、[-2
2
,-2]∪[2,2
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n(n∈N*)項(xiàng)和為Sn,a1=t,a2=-1,點(diǎn)Pn(an,Sn),若點(diǎn)Pn(n=2,3,4,…)都在斜率為
1
3
的同一條直線上.
(1)當(dāng)t為何值時(shí),數(shù)列{an}是等比數(shù)列?
(2)在滿足(1)的條件下,設(shè)bn=λan-n2,若數(shù)列{bn}中,有b1>b2,b3>b4,…,b2n-1>b2n,…成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中點(diǎn),AC=1,AA1=BC=2.
(1)求證:BC1⊥平面AB1C;
(2)求三棱錐C-AB1E的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ADEF與梯形ABCD所在平面互相垂直,AD⊥CD,AB∥CD,AB=AD=
1
2
CD=2,點(diǎn)M在線段EC上且不與E,C重合.
(1)當(dāng)點(diǎn)M是EC中點(diǎn)時(shí),求證:BM∥平面ADEF;
(2)當(dāng)EM=2MC時(shí),求平面BDM與平面ABF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)x2-5x-6>0;
(2)1+2x-x2≥0;
(3)|2x-1|>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-2<x<2,求y=2
10
3
-x
4-x2
的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案