如圖,正方形ADEF與梯形ABCD所在平面互相垂直,AD⊥CD,AB∥CD,AB=AD=
1
2
CD=2,點(diǎn)M在線段EC上且不與E,C重合.
(1)當(dāng)點(diǎn)M是EC中點(diǎn)時(shí),求證:BM∥平面ADEF;
(2)當(dāng)EM=2MC時(shí),求平面BDM與平面ABF所成銳二面角的余弦值.
考點(diǎn):二面角的平面角及求法,直線與平面平行的判定
專題:空間位置關(guān)系與距離,空間角
分析:(1)取DE中點(diǎn)N,連接MN,AN,由三角形中位線定理,結(jié)合已知中AB∥CD,AB=AD=2,CD=4,易得四邊形ABMN為平行四邊形,所以BM∥AN,再由線面平面的判定定理,可得BM∥平面ADEF;
(2)建立空間直角坐標(biāo)系,用坐標(biāo)表示點(diǎn)與向量,利用EM=2MC,求出平面BDM的法向量、平面ABF的法向量,利用向量的夾角公式,即可求平面BDM與平面ABF所成銳二面角的余弦值.
解答: 證明:(1)取DE中點(diǎn)N,連接MN,AN
在△EDC中,M、N分別為EC,ED的中點(diǎn),所以MN∥CD,且MN=
1
2
CD.
由已知AB∥CD,AB=
1
2
CD,
所以MN∥AB,且MN=AB.
所以四邊形ABMN為平行四邊形,所以BM∥AN
又因?yàn)锳N?平面ADEF,且BM?平面ADEF,
所以BM∥平面ADEF;
解:(Ⅱ)以直線DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,
∵AB=AD=
1
2
CD=2,
則A(2,0,0),B(2,2,0),C(0,4,0),E(0,0,2),

則∵EM=2MC,
CM
=
1
3
CE
=(0,-
4
3
,
2
3
),
又∵
DB
=(2,2,0),
DM
=
DC
+
CM
=(0,
8
3
,
2
3
),
設(shè)平面BDM的法向量
n1
=(x,y,z),
n1
DB
=0
n1
DM
=0
,
2x+2y=0
8
3
y+
2
3
z=0

∴令y=-1,取
n1
=(1,-1,4),
∵平面ABF的法向量
n2
=(1,0,0),
∴cos<
n1
,
n2
>=
1
1•
18
=
2
6

∴平面BDM與平面ABF所成銳二面角的余弦值為
2
6
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二面角的平面角及求法,直線與平面平行的判定,熟練掌握利用向量知識(shí)解決立體幾何問(wèn)題是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列3個(gè)命題中:
①α∈(0,
π
2
)時(shí),sinα+cosα>1;
②α∈(0,
π
4
)時(shí),sinα<cosα;
③α∈(
4
,
2
)時(shí),sinα>cosα.
其中判斷正確的序號(hào)是
 
(將正確的都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)與拋物線C2:y2=4x的焦點(diǎn)F重合,橢圓C1與拋物線C2在第一象限的交點(diǎn)為P,|PF|=
5
3

(Ⅰ)求橢圓C1的方程;
(Ⅱ)若過(guò)點(diǎn)A(-1,0)的直線與橢圓C1相交于M,N兩點(diǎn),求使
FM
+
FN
=
FR
成立的動(dòng)點(diǎn)R的軌跡方程;
(Ⅲ)若點(diǎn)R滿足條件(Ⅱ),點(diǎn)T是圓(x-1)2+y2=1上的動(dòng)點(diǎn),求R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一個(gè)棱長(zhǎng)為2的正四面體ABCD的兩個(gè)頂點(diǎn)A,B分別在一個(gè)直角(∠EOF)的兩邊OE,OF上運(yùn)動(dòng),M是棱CD的中點(diǎn),設(shè)點(diǎn)M與O點(diǎn)的距離為d,則d的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:x2+(y-1)2=1,拋物線C2的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F為圓C1的圓心
(1)已知直線l的傾斜角為
π
4
,且與圓C1相切,求直線l的方程;
(2)過(guò)點(diǎn)F的直線m與曲線C1,C2交于四個(gè)點(diǎn),依次為A,B,C,D求|AC|•|BD|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=
1
2
AD=1,CD=
3
.        
(Ⅰ) 求證:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C為30°,設(shè)PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
AB,M是PB的中點(diǎn)
(Ⅰ)求直線AC與直線PB所成的角的余弦值;
(Ⅱ)求直線AB與面ACM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知B(-1,1)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn),且點(diǎn)B到橢圓兩個(gè)焦點(diǎn)的距離之和為4.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)A為橢圓的左頂點(diǎn),直線AB交y軸于點(diǎn)C,過(guò)C作直線l交橢圓于D、E兩點(diǎn),問(wèn):是否存在直線l,使得△CBD與△CAE的面積之比為1:7,若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log
1
2
[x2-2(2a-1)x+8]
(a∈R).
(1)若使函數(shù)f(x)在[a,+∞)上為減函數(shù),求a的取值范圍;
(2)當(dāng)a=
3
4
時(shí),求y=f[sin(2x-
π
3
)],x∈[
π
12
,
π
2
]的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案