【題目】動點在拋物線上,過點垂直于軸,垂足為,設.

求點的軌跡的方程;

設點,過點的直線交軌跡兩點,直線的斜率分別為,求的最小值

【答案】; 1

【解析】

試題分析:考慮點和點的關系,設點,由可把表示出來,再把代入已知拋物線方程即得; 分析題意知直線斜率存在,方程為,設點 由直線方程與曲線方程聯(lián)立方程組,消去的一元二次方程,則可得,當過點時,不妨設,則可以看作是曲線在A點處切線的斜率,則可計算出,當不過點時,計算,最后計算,交把代入得到關于的函數(shù),可求得最小值.

試題解析:設點,則由,因為點在拋物線上,

方法一:由已知,直線的斜率一定存在,設點,方程為

聯(lián)立

由韋達定理得

1當直線經(jīng)過點時,當時,直線的斜率看作拋物線在點處的切線斜率,則,此時;當時,同理可得.

2當直線不經(jīng)過點時,,

所以的最小值為.

方法二:同上

,所以的最小值為

方法三:設點,由直線過點交軌跡兩點得:

化簡整理得:

,令,則

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為,點均在函數(shù)的圖象上.

(1)求證:數(shù)列為等差數(shù)列;

(2)設是數(shù)列的前項和,求使對所有都成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在銳角△ABC中,兩向量p=(2-2sin A,cos A+sin A),q=(sin A-cos A,1+sin A),且pq是共線向量.

(1)求A的大小;

(2)求函數(shù)y=2sin2B+cos(取最大值時,角B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在坐標原點的橢圓經(jīng)過點,且點為其右焦點.

)求橢圓的標準方程;

)是否存在平行于的直線,使得直線與橢圓有公共點,且直線的距離等于4?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某投資商到一開發(fā)區(qū)投資72萬元建起一座蔬菜加工廠,第一年共支出12萬元,以后每年支出增加4萬元,從第一年起每年的蔬菜銷售收入均為50萬元,設表示前年的純利潤總和=前年的總收入年的總支出投資額.

1該廠從第幾年開始盈利?

2若干年后,投資商為開發(fā)新項目,對該廠有兩種處理方案:

當年平均利潤達到最大時,以48萬元出售該廠;

當純利潤總和達到最大時,以16萬元出售該廠,

問哪種方案更合算?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,,,,,設中點,點在線段上,且

(1)求證:平面;

(2)設異面直線的夾角為,若,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的對稱軸為,.

1)求函數(shù)的最小值及取得最小值時的值;

2)試確定的取值范圍,使至少有一個實根;

3)若,存在實數(shù),對任意,使恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】水培植物需要一種植物專用營養(yǎng)液.已知每投放)個單位的營養(yǎng)液,它在水中釋放的濃度(克/升)隨著時間(天)變化的函數(shù)關系式近似為,其中,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當水中營養(yǎng)液的濃度不低于4(克/升)時,它才能有效.

(1)若只投放一次4個單位的營養(yǎng)液,則有效時間可能達幾天?

(2)若先投放2個單位的營養(yǎng)液,3天后投放個單位的營養(yǎng)液.要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,討論的單調(diào)性;

2若對任意的恒有成立,求實數(shù)的取值范圍

查看答案和解析>>

同步練習冊答案