【題目】已知函數(shù),無窮數(shù)列的首項.
(1)如果,寫出數(shù)列的通項公式;
(2)如果(且),要使得數(shù)列是等差數(shù)列,求首項的取值范圍;
(3)如果(且),求出數(shù)列的前項和.
【答案】(1);(2)或;(3).
【解析】
(1)化簡函數(shù)為分段函數(shù),然后求出.
(2)由是等差數(shù)列,求出公差,首項,然后求解的范圍.
(3)當(dāng)時,求出前項和,當(dāng)時,當(dāng)時,分別求出項和即可.
解:(1)函數(shù)
又且,.
(2)因為是等差數(shù)列,則,,
由分段函數(shù)的解析式及等差數(shù)列的性質(zhì)有,公差.
當(dāng)時,有,符合題意.
當(dāng)時,,
由得,得,,
又,則無解.
當(dāng)時,,
由得,得,此時,滿足.
綜上所述,可得的取值范圍是或.
(3)當(dāng)時,,
數(shù)列是以為首項,公差為的等差數(shù)列,
.
當(dāng)時,,
時,.
時,.
時,
又也滿足上式,
當(dāng)時,,
時,.
時,.
時,
又也滿足上式,.
綜上所述:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:當(dāng)時,對任意恒成立;
(2)求函數(shù)的極值;
(3)當(dāng)時,若存在且,滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一種擲硬幣走跳棋的游戲:在棋盤上標(biāo)有第1站、第2站、第3站、…、第100站,共100站,設(shè)棋子跳到第站的概率為,一枚棋子開始在第1站,棋手每擲一次硬幣,棋子向前跳動一次.若硬幣的正面向上,棋子向前跳一站;若硬幣的反面向上,棋子向前跳兩站,直到棋子跳到第99站(失。┗蛘叩100站(獲勝)時,游戲結(jié)束.
(1)求;
(2)求證:數(shù)列為等比數(shù)列;
(3)求玩該游戲獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)(、為實常數(shù)).
(1)當(dāng)時,證明:不是奇函數(shù);
(2)設(shè)是奇函數(shù),求與的值;
(3)當(dāng)是奇函數(shù)時,研究是否存在這樣的實數(shù)集的子集,對任何屬于的、,都有成立?若存在試找出所有這樣的;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以O為極點,x軸非負半軸為極軸建立極坐標(biāo)系圓C的極坐標(biāo)方程為,直線的參數(shù)方程為(t為參數(shù)),直線和圓C交于A,B兩點,P是圓C上不同于A,B的任意一點.
(1)求圓C及直線的直角坐標(biāo)方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,且在上存在零點,求實數(shù)的取值范圍;
(2)若對任意,存在使,求實數(shù)的取值范圍;
(3)若存在實數(shù),使得當(dāng)時,恒成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,是的中點.
(1)求直三棱柱的全面積;
(2)求異面直線與所成角的大。ńY(jié)果用反三角函數(shù)表示);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com